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TECHNICAL PAPER
LIMIT CYCLE VIBRATIONS IN TURBOMACHINERY
I. INTRODUCTION

High speed turbomachinery is used in many industrial and government applications.
These include natural gas compressors, turbines in electric power plants, jet engines, and rocket
engine turbopumps. Despite the differences in application, these machines are all susceptible to a
variety of common vibration problems. The most common vibration problem encountered with any
rotating machinery is rotor unbalance vibration. This problem has received much attention over
the last century and is well understood. Another common problem is dynamic instability. This
problem is well understood for situations that can be treated using linear analysis techniques;
however, the limit cycle instabilities that can occur in nonlinear systems have not received as
much attention. A third problem encountered in high speed turbomachinery is subharmonic
response to unbalance excitation. This phenomenon requires either nonlinear system character-
istics or time varying coefficients. This problem has been studied extensively for simple nonlinear
systems. A significant amount of study has been done for turbomachinery experiencing this
problem.

These last two problem areas have each received adequate treatment individually.
However, situations have occurred where a turbomachine was found to be susceptible to both
limit cycle instability and subharmonic response for apparently the same operating conditions.
For example, the high pressure fuel turbopump (HPFTP) of NASA's space shuttle main engine
(SSME) has a history of exhibiting subsynchronous vibration at frequencies ranging from 47 to
56 percent of shaft rotational speed. This includes many occurrences at exactly 50 percent which
could be attributed to a limit cycle instability or a subharmonic response. This appears to be a
case of what Hayashi! refers to as transition between almost periodic oscillations (limit cycle)
and entrained subharmonic oscillations. This makes it difficult to determine whether a
(catastrophic) divergent instability is impending or whether the machine is experiencing sub-
harmonic response. An examination of this condition is the focus of this report. Before proceeding
with the discussion of the combination of these two phenomena, a review of the prior work for
each individual problem is in order.

General discussions of subharmonic resonance can be found in many vibration texts such
as the works of Den Hartog? and Timoshenko.3 More detailed analysis can be found in nonlinear
vibration texts such as that of Hayashi.! These works deal primarily with a single nonlinear
second order equation representing 1 degree-of-freedom (DOF). Tondl* provides a thorough
treatment for 2-DOF models of rotating machinery. EhrichS and Childs® have each published
analyses of rotating machinery having nonlinearity in the form of a clearance or deadband in the
restoring force. Asymmetry in the nonlinear restoring force was required to demonstrate sub-
harmonic response. This asymmetry will occur in the presence of deadband when a static load is
present or when rotor-stator misalignment exists. Bently’ performed an experimental study
using a laboratory model rotor. Each of these researchers reached essentially the same conclu-
sions regarding subharmonic response. Namely, the resonance of a nonlinear rotordynamic sys-
tem can be excited by a frequency that is near an integer multiple of it. The range of excitation



frequencies for which this phenomenon will occur depends on the nature of the nonlinearity and
the other system characteristics. The response will be such that the nonlinear resonance fre-
quency is tuned to a fraction of the excitation frequency (e.g., 1/2). Hayashi! described this as
subharmonic entrainment.

Thorough treatments of the causes of dynamic instability can be found in many references.
Vance® devotes an entire chapter to the subject and provides an excellent bibliography. Ehrich®
provides a general survey of the fundamental causes of instability and gives some insight into
means for avoiding them. With regard to the type of instabilities considered here, Ehrich states:

“. .. the unifying generality is the generation of a tangential force, normal to an
arbitrary radial deflection of a rotating shaft, whose magnitude is proportional to (or
varies monotonically with) that deflection. At some 'onset’ rotational speed, such a
force system will overcome the stabilizing external damping forces which are
generally present, and induce a whirling motion of ever-increasing amplitude,
limited only by nonlinearities which ultimately limit deflections."

The tangential force can be generated by a variety of sources. Among these are fluid bearings and
seals, turbine aerodynamic forces, and shaft internal damping forces. These tangential forces, as
well as the restoring and dissipative forces, are usually represented by linear stiffness and
damping coefficients. The coefficients for the tangential force are usually called cross-coupled
stiffness and damping, respectively. For fluid bearings and seals, the cross-coupled coefficients
are directly related to the direct coefficients due to the fundamental physics involved. Black!© and
Muszynskal! both point out that the relationship is due to the transformation from the coordinate
system which rotates with the fluid average velocity to the inertial system. This fluid average
velocity is usually slightly less than half the rotor surface speed. This gives rise to the occurrence
of instability at near one-half rotor speed. A similar relationship is true for internal damping
except that the coordinate system rotates at the rotor speed. The onset speed of instability is
determined by examining the stability for various speeds and observing the value of speed that
causes the rotor to be unstable. This can be accomplished using Routh-Hurwitz techniques or by
calculating the system eigenvalues. For fluid bearings and seals, it can be shown that the onset
speed is approximately equal to the system resonance divided by the ratio of average fluid
velocity to rotor surface speed. Hence, for half synchronous (rotor speed) instability, the onset
speed is twice the first resonance.

The restoring, dissipative, and tangential forces discussed above are, in general, nonlinear
functions of displacement, velocity, and acceleration. Linearizing these functions about an equi-
librium point as discussed by Gunter!? results in the linear coefficients used in the stability anal-
ysis. The onset speed of instability determined by the subsequent analysis addresses stability in
the small. Due to the nonlinearities, a system may be globally stable when the linearized analy-
sis predicts an instability. A system in this condition could exhibit a limit cycle instability.
Sometimes the nonlinearity is in the form of a clearance or deadband in the restoring force. This
can occur for example when a seal rotor rubs on the stator or when rolling element bearings are
mounted with clearance between the outer race and the support. The nonlinear restoring force can
be represented by a piecewise linear function whose value is zero before the clearance is passed
and whose slope is equal to the "linear” stiffness of the bearing after it is passed. If all other
force elements are linear, the global onset speed of instability can be determined by assuming the
value of the clearance to be zero.!3 In this case, limit cycle instabilities can occur at speeds
below the global onset speed. The frequency of the limit cycle is determined by the nature of the



tangential force. For a system with linear fluid forces and clearance in the restoring force, if the
onset speed of instability is twice the linear resonance, the limit cycle will be at a frequency half
the rotor synchronous frequency. This is due to the fluid average velocity being approximately
half the rotor surface speed. If the fluid average tangential velocity is increased or decreased, the
limit cycle frequency will correspondingly increase or decrease.

Several researchers have demonstrated limit cycle instabilities using numerical simula-
tions. Control Dynamics!3 and Day!4 both modeled a single mass rotor with linear direct damp-
ing, cross-coupled stiffness, and deadband type nonlinear direct stiffness. Control Dynamics
demonstrated cases that exhibited limit cycles and also cases that did not. They also investi-
gated the stability in the small about an equilibrium point and concluded that global stability is
not affected by deadband (clearance). Day also demonstrated cases that exhibited limit cycle
instabilities and cases that did not. He searched (unsuccessfully) for analytical expressions
defining the transition points between cases with limit cycle instabilities and cases which only
exhibit synchronous response to unbalance excitation. Muszynskal> numerically and experi-
mentally demonstrated limit cycle instability in which more than one mode (resonance) was
unstable. As speed was increased, the first mode became unstable. As speed was further
increased, the second mode became unstable and the limit cycle of the first mode was

suppressed.

The understanding of subharmonic response and limit cycle instability as independent
phenomena is important for many problems that occur in practice. However, of equal importance
is an understanding of the relationship between each and the response of machinery that is
simultaneously susceptible to both. High performance turbomachinery falls into this category. In
fact, any rotating machinery that is operating above a critical speed, has nonlinear restoring
forces, has static loads and/or misalignments, and has tangential fluid forces can be susceptible
to both phenomenon. When the frequency of the limit cycle instability is close to a fraction of rotor
speed (e.g., 1/2) it may be confused with subharmonic response. In fact, if the results of Hayashil
extend to more complex systems, the limit cycle can become entrained by subharmonic response.
A relationship between the two can be intuitively expected. In simple terms, a subharmonic
response is caused by the (response amplitude dependent) frequency of a nonlinear system's
resonance tuning itself to be at a fraction of the excitation frequency so that it will be reinforced.
Likewise, the limit cycle instability is due to the frequency of a nonlinear system's resonance
tuning itself so that the (response amplitude dependent) real part of the eigenvalue is zero,
yielding a sustained transient.

No other work is known to the author which explores the simultaneous susceptibility to
these two phenomena, or the relationship between them in rotordynamic systems. The previous
work on subharmonic response generally neglected self-excitation forces that could lead to
instability. The previous work on instability did not include the proper conditions to cause sub-
harmonic response. The work by Control Dynamics!3 was contrived to represent fluid forces for a
seal with average velocity exactly half the rotor surface velocity. This resulted in a limit cycle at
exactly half rotor synchronous frequency. It is impossible to differentiate between the two in this
case.

Hayashi! examines the behavior of a self-oscillatory second-order system (van der Pol's
equation with periodic forcing term) in the transition between almost periodic oscillations (limit
cycle whose frequency is not a rational fraction of the excitation frequency) and subharmonic
entrainment of these limit cycles. He defines (in terms of the external force parameters) regions



in which entrainment will occur. A similar determination is proposed as part of this work; how-
ever, due to the nature of the nonlinearity to be studied here (deadband in the radial restoring
force) a purely analytical treatment becomes intractable. A combination of numerical and analyti-
cal approaches must be used. In addition, since it will be desirable to investigate complex real-
istic systems, a comprehensive numerical analysis tool is needed to model and simulate the
systems. Such a tool has been developed by the author in order to conduct the proposed
research. The tool consists of a package of computer programs to perform linear stability, linear
harmonic response, and nonlinear transient analyses of general turbomachinery.

The objective of this research is threefold: (1) to characterize limit cycle instability and
subharmonic entrainment and determine interrelationships between them, (2) to determine
regions in parameter space for the existence of each and thereby establish criteria for their avoid-
ance, and (3) to attempt to provide guidance for the interpretation of test data with regard to
impending divergent instabilities based on observation of subharmonic response or limit cycle
instability. The investigation begins using the nondimensionalized equations of a single mass
rotor with the appropriate characteristics. This study employs both analytical and numerical
techniques. The extension of the single mass model results to a complex, realistic system is
demonstrated by examining the HPFTP of the SSME. Available test data are examined and
linear analyses and nonlinear simulations performed.

II. MODEL FORMULATION

The initial model used in this study is a greatly simplified representation of a turbopump.
The model possesses only 2 DOF and, yet, it contains all the characteristics that are germane to
the phenomena being studied. A model which provides a more complex representation of a
turbopump is developed in appendix A. The simplified model can be obtained from the more
complex one, however, its development will be included here for clarity.

The simplified turbopump model consists of a single mass supported on symmetric
supports. The supports represent rolling element bearings or fluid film bearings and seals. They
are treated as linear spring and damper elements with the exception of including clearance or
deadband in the rolling element bearing force deflection relationship. The shaft flexibility would
also be included in the linear support spring. Fluid film bearings or seals require the inclusion of
cross-coupled stiffness and damping terms in order to characterize their influence on rotor
behavior. The model is excited by three different sources. Rotor mass unbalance provides excita-
tion at the shaft spin frequency (synchronous). Circumferential pressure distributions in a
turbopump are represented by fixed direction loads (side loads) at zero frequency. Random noise
is used to represent a variety of broadband random excitations that may exist in a turbopump and
to serve as a perturbation to investigate the behavior of the nonlinear system. Figure 1 provides
a schematic diagram of the system and defines the coordinate systems used in the derivation of
the equations of motion.
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Figure 1. Schematic of simplified rotor model.

The equations of motion are derived from a straightforward application of Newton's
second law of motion. Application of this law along the i and f axes yields

may=2 F, , (1)

ma;=Y F; , 3]
and along the ¢, and ¢, axes yields

ma, =2 F, , (3)

ma; =Y, F; . 4)

The component forces can be categorized as nonlinear support forces, linear support
forces, and excitation forces. The force-deflection curve for the nonlinear support force is shown
in figure 2. The displacement vector diagram is shown in figure 3a. The force in the direction of
radial displacement R can be written directly as

_k, (R-8) ifR>8

Fn= { 0 if R<6 (5)

This radial force can be resolved into its components along the i and f axes yielding (for R>4 )

Fyn=F,"kK=—k,,(1—I—<§)Y, ©
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Figure 2. Nonlinear support force deflection curve.
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(a) Displacement vectors.
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(b) Force vectors.

Figure 3. Vector diagrams for simplified rotor model.



F&=F,n%=—k,,(l—%)z .

(M
The linear support forces can be written in radial and tangential component form as
Fe,+Fyer = (~kiR-cR) ,+(~cRO+QR) &, . (8)
Transforming these into cartesian components yields
Fy,i+Fyj = (kY= c¥-QZ) i+ (ki Z-cZ+ Q) . ©)

The fixed direction side loads and random noise forces are shown in figure 3b. The unbalance
excitation force is a natural consequence of the proper differentiation (twice) of the displacement
vector of the center of mass. This vector can be written in either cartesian or polar coordinates as
the sum of the displacement of the geometric center and the mass eccentricity vector.

Reg = (R+e cos (B-6))e,+e sin (B-8)e;

= (Y+e cos (B))i +(Z+e sin (B)) . (10)

The angle B is defined as the rotation angle of the rotor and can be written as

~

t 1t " t - .
ﬁ=J J a(t*)dt*dt=j w(t)dt,
00 0 1)

where a is the angular acceleration and @ is the angular velocity of the rotor. Differentiating
equation (10) twice with respect to time yields

;diz (Reg) = [ﬁ—ézR—Bze cos (8 —6)-Pe sin (,6—9)]?,
t

+ (RO+2RO—p%¢ sin (B—6) + e cos (B-0)]e,

= [Y—Bze cos (B)-Pe sin (ﬂ)]t?+[2—[32e sin (B)+Be cos (ﬁ)]f. (12)

The appropriate expressions (cartesian or polar) from equations (5) through (12) can be
substituted into equations (1) and (2) or equations (3) and (4), respectively, yielding the equa-
tions of motion for the system. These equations in cartesian form are

m¥+c¥+k; Y+Q2+k,,(1— ;‘2‘) W(R—-8)Y = mef3® cos (B)+mef sin (B)+Fsy+Fay , -

mZ+cZ+k,Z—QY+k,,(1—£’ u(R-6)Z = me[iz sin (ﬁ)—meﬁ cos (B)+Fs;+Fn;, (14)



and in polar form are

mﬁ+cR+k1R—mé2R+k,,(R—5)u(R—6) = me[izcos (ﬂ—9)+meB sin (§-6)
+(Fgy+Fpy) cos (0)+(Fsp+Fyy) sin (6) , (15)
mRO+2mRO+cRO-QR = mef” sin (B—6)-mef cos (B—6)—(Fyy+Fyy) sin (6)
+(Fsz+Fng) cos (6) , (16)

where

s=|1 if R>4
u(R -0) {O if R<S 17

Noting from equation (11) that ﬁ = w and B = o and rearranging the linear and nonlinear
stiffness terms yields

mY+c?+k[1-y(1-u(R-5) )_71% u(R—6)} Y+0QZ = mew? cos (B)
+meo sin (ﬁ)+Fsy+F,,y , (18)
mZ+cz'+k[1-y( 1-u(R-6) )—yR{i u(R—S)] Z-QY = mew? sin (B)

-meat cos (B)+Fs,+Fp; , (19

in cartesian coordinates and

mR +cR-m@ >R +k [l—y( 1—u(R—6))—y—g— u(R—5)] R = me? cos (B—6)+mea sin (B-6)

+(Fsy+Fpy) cos () +(Fg;+Fyy) sin (6) (20)

mRO+2mRO+cRO-QR = mew? sin (B—0)—mea cos (B-6)

—(Fsy+Fpy) sin (0)+(Fs;+Fy;) cos (6) , 1)
in polar coordinates where
k=k+k, , (22)
and
_ kn
=% 23)



The bracketed expression multiplying k in equations (18) to (20) is arranged in a way that high-
lights the two regions of this nonlinear function. For R < §, the third term within the brackets is
zero and the expression reduces to the linear form [1-7]. For R > &, the second term is zero and

the expression reduces to [I_YI%] .

In order to generalize the results from this study, it is advantageous to reduce these
equations to a dimensionless form. This also has the benefit of reducing the number of parame-
ters in the problem. The first step is to divide equations (18) through (21) by m. When this is
performed, it is convenient to make the following definitions:

Fkn“ =of, 24)
=2{w, , (25)

@, and { correspond to the undamped natural frequency and damping ratio for this system with
the deadband (6) and the cross-coupled stiffness (Q) both set to zero. Substituting these defini-
tions yields the cartesian equations

Y+2§w,,Y+co,,[1 Y (1-u(R-58))-7 & u(R- 5)] v+27= ew? cos (B)

F
sy ny
Yo (26)

Z+2Ca),,Z+w,,[1 ~Y (1-u(R-96))- y u(R 6)] Q Y = ew? sin (B)

F,, F
~eacos (B)+ b+ Tt @
and the polar equations

R+2{0,R-0°R+w? [1-;/( l—u(R—é'))—yg u(R—a)] R = ew? cos (B—6)+ea sin (B—6)
Fey+Fp
+{—-———y::1 y)cos (9)+(F FotFpy ’sm 9) , (28)
R6+2R0+2(0,R0 -2 R = ew? sin (B-06) - eax cos (B-0)

(FrtEas) o () + (ExctEnt) cos (6) (29)

Next, time is normalized by the following substitutions:

1= T (30)
w, ’



;_d§_ dE_ .,
S= i = On gy =@t 31)
E=w3&” . (32)

In these expressions, & represents any variable which is being differentiated. Performing these
substitutions and dividing through each equation by w? yields the cartesian equations

Y T SN Ny 2 - Foy  Fny
Y +2LY +[1 Y (1-u(®R-8)-7 S ur 6)] V+gZ=ep? cos (B) + epsin (B) + 2+,

” ’ _ _ _ . Q _ - — 2 i _ &l ﬂl
7"+2L7 +[1 Y (1-u(®R-8)-7 & uR S)JZ a¥=eptsin (B) - epcos (B + T4 T2,

and the polar equations

R”+2(R' -6 R+ [l—y(l—u(R—S))—yRé u(R—5)] R = ep? cos (B-8) +e sin (B-6)

+ (M) cos (6) + (_F_-ﬁ_ﬁll_l) sin (0) ,
k k (35)
RO’ +2R' G +2{RO —qR = ep? sin (f-6)—e cos (-0) — (LF”V) sin (6)
+(ﬂz+_Fnz.) cos (6) ,
k (36)
where
L VI
mw? k' (37)
=
P=w, (38)
and
p=-.
W (39)
The angle B defined by equation (11) can be expressed in terms of 7, p, and u as follows:
T
p=|[ opuen d 2= [ [ ueorsenaz = [ peraz
0 (40)
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The final step in the nondimensionalization process is to define the following new vari-
ables

Y=y8, (41)
Z=1z0, (42)
R=r5. (43)

Substituting equations (41) through (43) into equations (33) through (36) and dividing through
by & yields the cartesian equations :

y"+28y [ 1=y (1=u(r=1)) - Lu(r-1)| y+gz = ap? cos (B) + ap sin (B +8y+7y » (44

z”+2§z'+[1-y( 1-u(r-1)) — % u(r—l)] z-qy = ap? sin (B) — ap cos (f) +g+1;, (45)
and the polar equations
74207 -0+ 1-y (1-u(r=1)) - L u(r-1)] r = ap? cos (B-6)+ap sin (B-6)
+ (gy+My) cos (0) + (gz+7;) sin 6 , (46)

r0” +2r'0’+20r8 —qr = ap? sin ($-6) - ay cos (f-6) — (gy+1ny) sin (6)

+ (g +1My) cos (6) , (47)
where
a=§ (48)
&= iay ’ (49)
8575 (50)
Ty= i:sy ’ (51)
o= (52)

These equations contain a total of 10 dimensionless parameters. The number of parameters can
be reduced by making a few assumptions. First, since the system is symmetric, g, can be
assumed to be zero without loss of generality. Second, for the cases to be investigated here,

11



4 will be very small and can be neglected. Finally, 1, and 71, are assumed to be uniform random
number sequences with the same range (-7.7). These assumptions yield a total of seven
dimensionless parameters: gy, a, p, §, g, ¥ and 7. A complete parametric study including all
seven parameters is not feasible; however, a subset of the most significant will be selected
based on the analyses discussed in the next section.

III. ANALYTICAL TREATMENT

The system model defined in the previous section can be analyzed in several ways. The
equations can be linearized about various equilibrium conditions in either the cartesian or polar
form. This approach is appropriate when examining limit cycle instability. The forced response
can be determined for the nonlinear system using a harmonic balance procedure. This is appro-
priate when examining subharmonic resonance. This method requires a combined analyti-
cal/numerical approach in order to determine a solution. Each of the linearizations and the har-
monic balance method yield certain insights into the characteristics of the system; however, no
single approach is adequate to describe the general case.

A. Linear Stability

The simplest approach to linearization is to neglect the deadband (8) by assuming it to be
zero. For this approach, equations (33) through (36) must be used since equations (44) through
(47) are based on nondimensionalizing equations (33) through (36) using & as the basis. As
discussed in reference 13, the stability determined in this manner is the global stability. Working
with the cartesian equations, the Routh criterion will be applied to the characteristic equation for
the system to determine the stability boundary. Applying the & = 0 assumption to equations (33)
through (34) yields

F F
Y"+20Y'+Y+qZ = ep? + i 3 AL A
4 qZ = ep? cos (B) + e sin (B) + P p 53)
Z"'+20Z'+Z—qY = ep? sin (B) — ep cos (B) + Fse  Fnz
k k (54)

Stability of the system is determined from the homogeneous solution to these equations.
Assuming solutions of the form

Y=Y eAt , (55)
Z=2Z7 et s (56)

results in the following algebraic equation:

A4+20A+1 q }{y}zgo}.
-q 12+2CA+1 zZ 0 (57)
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This equation has a nontrivial solution only when the determinant of the matrix is zero.
Expanding this determinant yields the characteristic equation for the system,

2443+ AL+ 2)A% 4400+ 14+q2 =0 . (58)

Applying the Routh test to this polynomial yields the following array:

24 1 44%+2 1+42
A3 4 4t
22| 48%+1 1+q2
2 | 44 -¢%)
40%+1
20 1+g2

For positive {, the only possible sign change in the first column occurs in the Al row. This term
will remain positive as long as

9 <l.
2¢ (59)

Therefore, equation (59) is the stability criterion for the system. In terms of the original system
parameters given in equations (18) through (21), this condition becomes

0 k _
?<\/—T;“"ﬂ' (60)

As discussed in section I, there is generally a relationship between Q and ¢ (or ¢ and 2{) that is
determined by the fluid dynamics of the particular system under consideration. This relationship
is generally a function of rotor speed. The form of this relationship that is assumed in this study
is discussed later.

It is of interest to determine the roots of the characteristic equation (equation (58)) in the
marginally stable condition (_q_ = 1) . Equation (58) can be expressed in factored form as

2¢

(A2+20A+1+jg) (A*+2{A+1-jg) =0 . (61)

The roots of this equation can be determined by applying the quadratic formula to each term
yielding

Ai=-CtV3-14jg . (62)

Substituting g = 2{ into equation (62) yields the four roots
Az =%j1, (63)

13



13.4 = —2Cj:jl . (64)
These roots can be related back to unnormalized time yielding

Ao =tjw, (65)
A34=-200.tj0, . (66)

It can be seen from comparing equations (59) through (66) that the frequency of the instability is
equal to wy and the instability occurs when the ratio % is equal to w, . It will be shown next that

Y

for the nonlinear system (6 # 0) the frequency of the limit cycle that can occur when - is less

Q

than @, is equal to = for certain cases.

B. Self-Excited Equilibrium

The approach taken next is to seek an equilibrium solution to the nonlinear, homogeneous
equations in polar form. The homogeneous form of equations (46) and (47) is first rewritten for
two cases, r < 1 and r > 1. For r < 1 the result is

r+28' -0 r+(1-pr=0 , (67)

r0”+2r'e’+2Lr0’—qr=0 . (68)
For r> 1 the &, equation is identical to equation (68) and the ¢, equation is given by

420 -0"r+r-y=0 . (69)

For an equilibrium solution, the quantities r”, r, and 6" are all zero. Eliminating these terms from
equation (68) yields the equation governing the equilibrium angular velocity

28ro00—qro=0, (70)
or expressed explicitly
0°0=21L .
20 (71)

This applies for all values of r. It should be noted that this is the ratio that governs the system
global stability as shown in the preceding paragraphs. For the case where r < 1, eliminating the
same quantities as before in equation (67) yields the equation governing the equilibrium radius

(1—’}’—9%) r()=0 . (72)

The only equilibrium solution to this equation is » = 0 which was expected since, for this range of
r, the system is linear. For the case where r > 1, the same quantities are eliminated from equa-
tion (69) yielding
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(1-8°9) ro-y=0, (73)

or explicitly
Y Y

B 1-07% B 1-{4V .
2

ro
(74)

In order for a nonzero solution to exist for ro, ro must have a value greater than 1. Examination of

q
equation (74) shows that to meet this condition, 2¢ must be greater than Y1-7 . This can be

recognized as the instability criterion for the linear system obtained for the case r < 1. In other
words, if the linear system defined for the case of the radial deflection being less than the dead-
band is stable, no equilibrium solution (other than ro = 0) is possible. If the linear system is
unstable, the equilibrium radius is governed by equation (74). This equilibrium motion represents
a limit cycqle instability. It can also be seen from equation (74) that at the global stability

boundary, 57 = 1, the solution is unbounded, as would be expected.
C. Mass Unbalance Equilibrium
The self-excited equilibrium determined in the above paragraph gives insight into the
behavior of the system; however, it does not represent a very practical case since it is completely
unforced. Another case of interest is the equilibrium solution to the system when excited only by
mass unbalance. The solution is assumed to be harmonic with frequency equal to the excitation

frequency (synchronous response), i.e., 6o = p.The equilibrium assumptions are applied to
equations (46) and (47) (assuming u = 0). The result for r < 1is

(1-y-p* ro=ap® cos (B-6) , (75)
(2{p-q) ro = ap* sin (B-6) . (76)

For r > 1 the ¢, equation is identical to equation (76) and the &, equation is
(1-p*) ro-y= ap® cos (B-6) . an

Equations (75) and (76) can be solved simultaneously for ro yielding

ap?

ro=
V(1-7-pH2+(2¢p—q)* (78)

for r < 1. Equations (77) and (76) can be solved simultaneously for rp yielding

o - (1=p2y £V a2pH(1-p2)? +a2p*2Lp-q)*-1*2Lp-a)”
(1-p2)*+(2¢{p-9)* (79)
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for r > 1. Equation (78) is valid for all values of the parameters for which the linear system
defined for the case of r < 1 is stable. Three conditions must be met for equation (79) to be valid.
First, the quantity under the radical must be greater than zero since r must be real valued.
Second, one of the differential equations from which equation (79) was derived (equation (69)) is
only valid for r > 1; therefore, the predicted value of » must be greater than 1. Third, the equilib-
rium must be stable (determined in a following section).

D. Side-Force Equilibrium
A third equilibrium point of interest is the case with fixed direction side forces and no
unbalance. The solution is assumed to be static, i.e., all time derivatives are equal to zero.
Applying these assumptions to equations (46) and (47) (and recalling that g, was assumed to be

zero in section II) yields
(1-y)ro = gy cos (6o) (80)

gro = gy sin (6p) , (81)
for r < 1. For r > 1, the ¢, equation is identical to equation (81) and the ¢, equation is
ro—Y = gy cos (6p) . (82)

Solving equations (80) and (81) for the case of r < 1 yields

ro = —5 ,
V(1-9)?+¢* (83)
6, = tan™! (_q_) .
1-y (84)
This solution can easily be expressed in terms of cartesian coordinates as
= gy(l"Y)
(1-n?+q? (85)
(1-p)°+q2 (86)
For the case of r > 1, equations (81) and (82) yield the following quadratic equation in ry,
( 1+q2)r2—-2‘yr0+ yz—g2 =0
0 y : (87)

The solution of this equation is found to be
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2
y+V g,(1+g%) -7’
; .

ro=

l+g (88)
It can be shown that for all cases where ro predicted by equation (83) is greater than 1, the
quantity under the radical in equation (88) is greater than zero. The corresponding solution for 6y
is

6y = tan! {__qro } .

ro-Y (89)

Equations (88) and (89) can be transformed into cartesian coordinates yielding
yo = ro cos (6p) , (90)
2o = 1o sin (6p) . (91)

E. Linearization About Self-Excited Equilibrium

Equilibrium solutions have now been determined for three specific cases of interest.
These cases are the self-excited system (equations (71) and (74)), the synchronous response
to unbalance excitation (equations (78) and (79)), and the static response to side forces
(equations (83) through (91)). Linearizations of the equations of motion can be determined for
each of these cases. The polar form of the equations will be used for the first two cases and the
cartesian form for the last.

Linearization of the equations of motion is only necessary for r > 1 since the system is
already linear for r < 1. The linearized form of the equations of motion for the first two cases can
be developed together. The appropriate excitation terms can be dropped in order to obtain the
equations for the self-excited case. Equations (46) and (47) are used with only the unbalance

excitation forces retained. Also, as in the determination of the equilibrium solution, the angular
acceleration g is assumed to be zero. The resulting equations are

Y'+20r—8r+r-y= ap? cos (B-0) , (92)
r0”+2r' 0’ +2Lr0’—qr = ap? sin (B-6) . (93)

The linear equations will be obtained by examining perturbations about the equilibrium solutions.
This is achieved by making the following substitutions into equations (92) and (93):

r=ro+r, (94)

6’ = 0’0+5’ . (95)
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The variables 7 and 6’ are the perturbation variables. The linearization is accomplished by
making the substitutions and neglecting terms of second order or greater in the perturbation
variables.

For the self-excited case the resulting equations are
P27 +(1-03)7-26"0r08" = ro(83-1)+7 , (96)
708 ”+26°0F +(2£6°0-q)r+2Lre8 " = (q—2L6"0)ro . 97)
The equilibrium conditions are obtained by setting the perturbation terms to zero. The results are

identical to those obtained previously (equations (71) and (74)). The stability of this equilibrium
is determined from the homogeneous solution of equations (96) and (97). The characteristic

equation for this system (with the substitution 8’y = ¢/2{) can be written as

A3 +4§22+(16C4+4§2+3q2)l+(452—q2 ) =0 .
44 26

It can be shown that the Routh test applied to equation (98) yields the same stability criterion as
the global stability criterion given in equation (59).

(98)

F. Linearization About Mass Unbalance Equilibrium

For the synchronous response case, the linearized equations are (with the substitution
0’0 =p)

P20 +(1-p2)F-2pro8’ = ro(p2-1)+y +ap2 cos (B-0) , 99)

108" + 207" +(2Lp-q)r+2Lr0 8’ = (g-2Lp) ro+ap? sin (B-6) . (100)

Before proceeding with the perturbation analysis, the sine and cosine terms must be expressed
in terms of the perturbation variables. For the constant speed condition under consideration, it
can be seen from equation (40) that 8 = p7+fp. 6 can be written in terms of the perturbation
variable as
T T
9=I (6°9+8")dT= pr+60+j 0'dT=pr+6p+0 .
0 0 (101)

The resulting argument of the sine and cosine terms in equations (99) and (100) is Bp—80—6.
The equilibrium solution for ro obtained by setting the perturbation terms to zero is identical to
that given in equation (79). The equilibrium solution for the phase angle So— 6y can be expressed
implicitly by
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(1-pHro-y

cos (Bo—-06p) = >

ap (102)
sin (Bo—6o) = Qgi——fl@ ,

ap (103)

The terms cos (,60-60—5) and sin ([30—60—5) can be expanded using elementary trigonometric
addition identities into the form

cos (ﬁo—()o—b_) = cos (fg—06p) +sin (ﬂo—60)5 , (104)

sin (Bo—6o—8) = sin (Bo—00) - cos (Bo-60)6 . (105)

The small angle assumptions cos (5): 1 and sin (5)= @ have already been incorporated into
these equations. Equations (102) and (103) are now substituted into equations (104) and (105).
The resulting expressions are substituted into equations (99) and (100). Retaining only those
terms involving the perturbation variables yields

7+ 207 +(1-p2)F—2pr08 - (2p—-q)red =0 , (106)
708" +2p7 +(2Lp-q)T+20ro8 +(1-p2)ro-y)0 =0 . (107)

The characteristic equation which results from these homogeneous equations is
A+alA3 +[4Lr+2p2+2- %)12+2[2C(1—p2)—€—07+ 20Q2Lp—q)|A

et f1_p2- Y=
+@¢p-g7+(1-p?)(1-p2-L)=0 . (108)

This equation involves the equilibrium solution rq and, hence, a stability criterion cannot be easily
expressed analytically. The stability of this equilibrium will be determined numerically for various
values of the system parameters and presented in section IV.

G. Linearization About Side-Force Equilibrium

The side-force equilibrium case will now be treated using the cartesian form of the equa-
tions of motion. The equations of motion (equations (44) and (45)) with only side-force excita-
tion can be written as

Y

y”+2Cy'+qz—gy=—(1 r——— P

(109)

Z"+2CZ'—qy—gz=—(1 S -

Z,

(110)
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where the nonlinear restoring force has been isolated on the right-hand side and r has been
expressed explicitly in terms of y and z. The right-hand sides of equations (109) and (110) can
be linearized using their Taylor's series expansions about the equilibrium points yg, zo. Retaining
only the first-order terms and rearranging the equations results in the homogeneous equations

2
i”+2£)7’+(1— 27, =+ 3’072 1)i+ Yozo¥ Jz+gz=0,
Vyg+z§ (o +z6): (y§+23): (111)
z"+2§z'+(1— Y %Y 3)z+ y"ZOZ,)?-«ﬁ:O.
Vyd+z4 (yo+z ) \(v§+23): (112)

The equilibrium points (given in equations (90) and (91)) were derived for the case where g, = 0.
In examining equations (111) and (112), it would be convenient to be able to consider an equilib-
rium point on one of the coordinate axes, such as zo = 0. This can be accomplished without loss of
generality by considering the load to be applied at an angle of — 8y with respect to the y axis
where 6 is given by equation (89). In this condition, yo will be equal to rp as defined by equation
(88) and zo will be zero. Since the system is symmetric, the stability of this equilibrium point will
be identical to the original point. For this case, equations (111) and (112) become

Yy 20y +y+qz=0, (113)
—” 4 __)’_ N =
2"+2{z +( ~qy=0. (114)
The corresponding characteristic equation is
4 3 2) 52 Y Y L2
At+4L A7+ (2 +4§)/1 +2§(2 }/1+1 +q%2=0 . (115)
Application of the Routh test to this equation yields the following stability criterion:
\/ — 1) .
2; 27‘0 84’ ro (116)

Since this relation involves the equilibrium solution ry. A general conclusion about the stability
cannot be drawn. However, for cases where the quantity within the parentheses is positive, this
requirement is less restrictive than the global stability criterion (equation (59)). This implies that
over some range, the addition of side forces to a system with deadband in the restoring force has
a stabilizing influence (in the small). More general results will be presented in section IV by
evaluating the roots for various values of the system parameters.

H. Subharmonic Response Analysis
The stability of the system model has been examined for various equilibrium conditions.

The solutions obtained provide insight into the characteristics of the limit cycle instability. An
understanding of the characteristics of the subharmonic response will now be sought using a
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harmonic balance method. The dimensionless cartesian equations (equations (44) and (45)) will
be used. The assumptions made previously (g, = 0 and u = 0) will be made here, and the random
noise excitation (7, and 7;) will be neglected.

The nonlinear restoring forces in equations (44) and (45) can be rewritten to facilitate the
development of the harmonic balance equations. The modified equations are

y’+28y +(1-7)y +qz+f)(y.2) = ap? cos (pT) +gy , a17)
2"+207'+(1-7)z-qy+f(y,2) = ap? sin (p7) , (118)
where
1 i Av2452
Yl -——y if~y*+z>1
2 a
f(y,2) = ,
g 0 if Vy2+22 <1
(119)
and
v(1-—L—lz ifvy2+z2>1
(y,2) ( yhret
f(y,2) =
‘ 0 if ¥Vy2+z2<1
(120)

The method used here is essentially the same as that used by Noah.16 This investigation will be
limited to subharmonics of order 2 (one-half synchronous). The solutions for y and z are assumed
to be superpositions of a fundamental sinusoidal component and N of its harmonics. The funda-
mental in this case is the one-half synchronous subharmonic. These solutions are given by

y=ayo+é(“»COS(”%T)'b”sm("%f)) ’ (121)

z=420+§:1 (az“ cos (n%f)—bzn sin (”%T)) ' (122)

The nonlinear restoring forces f, and f, are approximated by similar harmonic expansions given
by

fy=cyo+ il [evec05 (15 7)- dysin (2.5 (123)

fz=clo+§ (Cz,. cos (n%l')—dzn sin ("% )) ‘ (124)
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Substituting equations (121) through (124) into equations (117) and (118) and performing a
harmonic balance yields a set of 4N+2 linear equations in 8N+4 unknowns (ay,, az,, cy,, Cz,, Gy,,
a;, by, by, ¢y, ¢z, 4y, dy, ..., 1= 1LN). The additional 4N+2 equations needed for a solution are
determined from the relationship between f, and f; and the solutions y and z given by equations
(119) and (120). These equations can be solved using an iterative numerical procedure. The
results will provide insight into the effects of the various system parameters on the subharmonic
response.

Analytical solutions have been developed for the model formulated in section II. These
solutions are expressed in terms of the model parameters. In section IV, numerical values (or
ranges of values) will be specified to define the model. The numerical values of the analytical
solutions will then be presented for various values of the model variables.

IV. MODEL DEFINITION AND ANALYSIS RESULTS

A simplified single mass model of a turbopump rotor has been formulated in section IL
Analytical expressions for various equilibria and linearized stability conditions were obtained in
section III. In this section, numerical values and ranges of values will be specified in order to
define the model. Using these values, numerical results will be presented for the solutions
developed in section IIL

A. Model Definition

The model consists of seven dimensionless parameters (gy, a, p, {, g, 7, and 7). These
parameters are defined at the end of section II. The values to be chosen for these parameters will
be based in part on the author's experience and in part on the analytical expressions obtained in
section III. Initially, the random noise parameter 7 will be neglected. This assumption was made

in the developments of section III. Parametric studies of the effects of 77 will be performed later
using simulations.

The nonlinear stiffness to total stiffness ratio (9) is restricted by its definition to range
from zero to one. Typically, in rocket engine turbomachinery, rolling element bearings provide a
significant, if not the majority, of the rotor support stiffness. These bearings frequently are
mounted with clearance between the outer race and the bearing support. This clearance provides
the deadband & discussed in section II. A value for ¥ of 0.75 has been selected to represent a
typical rotor support situation where clearance mounted bearings provide a majority of the rotor
support stiffness.

The dimensionless side load gy and dimensionless unbalance a were normalized by the
deadband 4. Hence, they should have values on the order of unity to represent cases where the
rotor is operating in a highly nonlinear fashion. Values much greater than unity will tend to
obscure the deadband. Values much less will cause operation in the linear range of the function
defining the rotor support (equation (5)). Nominal values of 1.0 and 0.5 have been assigned to 8y
and a, respectively.

The shaft angular velocity p is a primary parameter in any investigation of rotating
machinery, and a wide variety of values will be examined. However, the upper limit of interest is
the maximum of the global onset speed, the unbalance stability threshold, and the side-force
stability threshold.
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As discussed in sections I and III, the dimensionless cross-coupled stiffness g is
generally related to the fluid damping 2. This relationship is due to the fluid average tangential
velocity being a function of rotor surface velocity. If a fixed ratio is assumed, g can be expressed
in terms of this ratio, the rotor speed, and the damping. This ratio is typically slightly less than
one half. If the configuration is such that the fluid is entering the fluid seal or bearing with a
tangential velocity greater than the rotor surface speed, the ratio can be greater than one half.
Designating this ratio as o, the cross-coupled stiffness can be expressed as

q=2{po . (125)

Since a primary objective of this study is to examine systems which are simultaneously
susceptible to limit cycle instability (governed by o) and subharmonic resonance, the value of ¢
has been selected to be 0.48 (close to but slightly less than one half). This ratio has frequently
been observed in SSME test data. Values greater than one half will also be examined. The
damping ratio  is typically low in rocket engine turbomachinery. A nominal value of 0.10 has
been assigned to this study. This value is representative of the damping in the HPFTP of the
SSME.

Nominal values have been assigned for all parameters of the model. These values are
summarized in table 1. The results of the analyses of section III will be presented for these
nominal values.

Table 1. Nominal model parameters.

Parameter Value
g 1.0

0.5
0.-4.0
0.1
0.48
0.75

<

2lal~lole

B. Analysis Results

The first result developed in section III was the stability criterion for the case of zero
deadband (equation (59)). Substituting equation (125) into equation (59) results in the criterion

1-_1 _7208.
P<% 0.48 08 (126)

As discussed in section III, this is the global onset speed of instability for the system. It will be
designated by pg;. The roots of the characteristic equation (equation (58)) are shown in figure 4
for various values of { and & as p is varied from 0.0 to 4.0. The plot for variations in { shows the
roots in the complex plane. As o is varied, the roots follow identical loci except that the speed
correspondence is different. For this reason, the critical damping ratio is displayed for the roots
as ois varied. As expected, the imaginary axis crossing is determined by equation (126).
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The next result developed was for the equilibrium solution to the homogeneous polar
equations. The results showed the possibility of a limit cycle instability with a frequency given by
equation (71) and radius given by equation (74). Substituting equation (125) into these
equations and applying nominal values for the parameters yields

8’ho=0p=048p , (127)
and
rp= —————0752 .
(1-0.48" p2) (128)

As discussed in section III, this equation is valid only when ro is greater than 1. This will be true
whenever g/2({ is greater than Y1—y . Expressing this in terms of the parameter values yields

p> Y1-¥ _¥025 _ 104 .
o 0.48 (129)

Since this is the initial value for which a limit cycle is possible, it will be designated by py..
Equation (128) is plotted in figures 5 and 6 for a range of p from zero to the global stability limit.
Figure 5 presents the solution for various values of ¥ and figure 6 for various values of o. The
primary effect of each parameter is to change the range of values of p over which the
homogeneous equilibrium is possible. y does not alter the upper limit (p,;) but it has a strong
effect on the lower limit (p;.). For ¥ = 0 (the linear problem), no homogeneous equilibrium is
possible. For y = 1, the equilibrium is possible for all values of p from zero to the global onset
speed of instability. o affects the lower and the upper limit since both are inversely proportional
to 0. As would be expected from examination of equation (128), the amplitudes increase
dramatically as the value of p approaches the upper limit.

The equilibrium solutions for the unbalance mass excitation case are given by equations
(78) and (79) for values of ro < 1 and ro > 1, respectively. The equations are subject to the
validity conditions discussed in section III. Stability of the equilibrium is governed by the roots of
the characteristic equation (equation (108)). The solutions are plotted in figures 7 through 10.
The absence of a portion of a curve indicates that the solution is not valid or is unstable in that
region. The stability condition for the linear case of ro < 1 (pic) and the global stability condition
(pgi) are indicated on the figures. The stability threshold for the equilibrium solution is also
indicated. This value was determined by examining the real parts of the roots of equation (108)
as the parameters were varied. This threshold is designated by py..

Figures 7 through 10 present the solutions for various values of 7, a, {, and o,
respectively. These curves contain regions where dual solutions are possible for the same value
of all parameters. One solution is for ro < 1 and the other for ro > 1. There are also regions where
no mass unbalance equilibrium solutions are possible. These are the regions where the
equilibrium would reside in the linear range ro < 1, but the system is unstable in this range
(p > pic), or the solution would reside in the range ro > 1 and the solution is unstable in that
range (P > pue). In these ranges, some combination of the homogeneous limit cycle solution given
in figures 5 and 6 and the unbalance might be expected. y has a strong influence on the limits of
these ranges. As 7 is increased, both p,. and p,. (when ro> 1) decrease. It also causes an
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Figure 7. Mass unbalance equilibrium solution versus p. Effects of y on solution
amplitude and py..
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effective lowering of the system resonance frequency. This would be expected since y softens the
support in a nonlinear way. The unbalance parameter a does not affect the limits p;. or pg;.
However, for the larger values, the solution never drops below 1.0 and, therefore, it exists for all
values of p up the equilibrium stability threshold p,. . { has little effect on the speed ranges
where unbalance equilibrium is impossible. Its primary effect is on the amplitude of the solution
at resonance (as with linear systems). ¢ directly affects both p;. and the global stability limit p;
(each is inversely proportional to o). It affects the equilibrium solution stability threshold py. ina
manner similar to its effect on py;.

The equilibrium solutions for the fixed-direction side forces are given by equations (83)
through (86) for ro < 1.0 and equations (88) through (91) for ro > 1.0. These equations are in
terms of g which should be replaced with its definition given by equation (125). The stability of
the solution for ro> 1.0 is determined by equation (116) or direct evaluation of the roots of
equation (115). Again, the definition of g given by equation (125) should be substituted into
these equations. The roots of equation (115) are plotted in figure 11 for various values of fand o
and in figure 12 for various values of yand g,. In both figures, p is varied from 0.0 to 4.0. As in
figure 4, the roots for variations in ¢ and g, are presented as critical damping ratios. The results
for all cases have certain similar characteristics. For p = 0.0, the y and z axis equations are
uncoupled due to the special form assumed for ¢ (equation (125)). The roots occur in complex
conjugate pairs with all real parts equal to {. One pair of roots has an imaginary part equal to

‘\/1.0—4’2 (corresponding to equation (113)) and the other has an imaginary part equal to

'\ll.O—ylro—C2 (corresponding to equation (114)). As p increases from zero, the equations
become coupled and the roots approach each other along the line defined by the real part equal to
¢. When the roots meet, they branch symmetrically away from the vertical line given by the real
part equal to {. One branch becomes more stable while the other moves toward the right half
plane.

The parameter { affects the roots primarily in two ways. First, it defines the real part of
the roots for values of p prior to the intersection of the roots. Second, since g is a linear function
of ¢, increasing it causes the root intersection and imaginary axis crossing to occur for lower
values of p. Increasing o has a similar effect without shifting the value of the real parts for small
p. For some small values of o, the roots never intersect for the range of p examined here. y
affects the imaginary part of the lower root for p = 0. For smaller ¥, this root moves closer to the
higher root. For y= 0 (the linear system), the roots are identical. Since the roots are closer
together their intersection and the imaginary axis crossing occurs for smaller values of p. The
effect of g, is similar to that of ¥, only inverted. This would be expected from examination of

equation (115). yand ro always appear as % in this equation and, from equation (88), it can be

seen that ry is almost a linear function of g,. For large values of g, or small values of ¥, equation
(116) indicates that the side force equilibrium is less stable than the global stability of the linear
system. However, for increasing values of g, the stability condition approaches the global
stability condition. This result was previously shown by Control Dynamics.12

The subharmonic resonance solution was developed in section III using a harmonic
balance procedure. This procedure was implemented using the Newton-Raphson method as
presented by Noah.!6 The primary interest here is in the values of the subharmonic components

of the series solution (ay1, by1, az1, b;1). The magnitudes of the y axis components (‘V ay21+b)2n)
are plotted in figures 13 through 17 for various values of gy, a, 7, {, and o, respectively. The z
axis components behave similarly. The absence of a portion of a curve in these figures indicates a

29



30

{
|
\

0.85— /-.—_F
X
0. 80 F: S
0. 75— C
- =.05
| L ¢=.10
¢ =.20
0.70 T T
-0.6 -0.% -0 .4 -0.3 -0.2 -0 0.0 a.1 0.2
RERL

(a) Effects of { on roots in complex plane.

~DMA=——=mA
o

CXT—TIT DO

Qe — DD

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
P

(b) Effects of o on critical damping ratio of roots.
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Subharmonic response solution versus p. Effects of gy on
magnitude of y-axis component.
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failure to converge to a solution. This failure most likely indicates that the assumed form of the
solution does not represent a solution that can actually exist for the given set of parameters. On
the other hand, the achievement of convergence for another set of parameters does not guarantee
that the solution will take the prescribed form, only that it is possible. This is important to note
when examining results from simulations which exhibit nonfractional subsynchronous response
(e.g., limit cycle instability), since these motions cannot be represented by the subharmonic
solution form.

The effect of g, on the subharmonic response can be seen from figure 13. As gy is
increased, the range of occurrence of the subharmonic narrows. The upper limit moves upward
slightly. The amplitude of the response is not significantly affected at a given value of p as long
as the value is within the range of occurrence. Within the range of occurrence of the subharmonic,
the response increases with increasing p.

The unbalance parameter a affects the subharmonic response in much the same way as g,.
This can be seen in figure 14. One difference to note is that the range of occurrence initially
broadens and subsequently narrows as a is increased. Also, the amplitude at a given value of p
varies a little more with a than with g,.

The most significant influence comes from the parameter y. This is not surprising since
this parameter gives a measure of the degree of nonlinearity in the system. The effects of y can
be seen in figure 15. For ¥= 0, no subharmonic is developed since the system is linear. As y
increases to 1 (its maximum), the amplitude and the range of occurrence of the subharmonic
response increase. The upper limit of the range drops somewhat.
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The damping parameter { has much less influence than the parameters discussed
previously. The primary effect is to increase the upper limit of the range of occurrence of the
subharmonic. This effect is shown in figure 16. Since { has little effect on the amplitudes, the
curves for each successive value of ¢ have been shifted vertically for clarity. The cross-coupled
stiffness parameter o also primarily affects the upper limit. Figure 17 shows its effect on the
subharmonic response. These curves are shifted as in figure 16. For very small values, no
subharmonic response occurs. After a certain value is exceeded, the range begins to broaden.
Both the lower limit and the upper limit are affected. The largest change comes as © approaches
a value of 0.5. As this value is approached, the upper limit of the range of occurrence and the
amplitude of the response at the upper limit increase dramatically. This is due to the coalescence
of the limit cycle instability frequency with the subharmonic response frequency. The upper limit
and the amplitude decrease as o increases beyond 0.5. These effects are indications of the
inherent relationship between limit cycle instability and subharmonic response that was
postulated to exist in section L

C. Preliminary Observations

The results developed in section III and presented in this section apply for certain
restricted, sometimes nonrealistic conditions. For example, the homogeneous equilibrium
solution is of little value for predicting actual system response since any real system will
possess some amount of excitation. Similar statements could be made about the other solutions
developed. However, each yields some insight into the characteristics of the behavior of the
system and some general conclusions can be drawn. The conclusions drawn for the restricted
cases can be extended to apply for cases where one parameter is dominant. For example, if the
unbalance is much larger than the side force, the characteristics observed for the unbalance
excitation case would be expected to hold. When this is not the case, other conclusions can be
drawn based on the results of the restricted cases.

The homogeneous solution to the polar equations yielded a range of occurrence, a
frequency, and an amplitude for the limit cycle instability. The analysis of the unbalance response
equilibrium determined the possibility of a solution in regions where the limit cycle equilibrium is
also possible. The stability analysis of the side-force equilibrium demonstrated that this
excitation increased the stability of the system (in the small). It is reasonable to expect that both
of these effects would tend to reduce the range of occurrence of the limit cycle. The limit cycle
instability is induced by the circulatory force represented by the cross-coupled stiffness. The
nature of this force for this system is expressed by the relationship g = 2{po. The value of o
determines the frequency of the limit cycle in the homogeneous case. Since the fundamental
driving mechanism for the instability is the same even when excitation is present, it is expected
that the frequency of a limit cycle under these conditions would remain close to that predicted for
the homogeneous case. The amplitudes predicted for the homogeneous case would most likely be
significantly changed by the addition of the unbalance and side-force excitations. However, the
general trend of increasing amplitude as the global stability limit is approached would be
expected to hold.

The unbalance response equilibrium solution demonstrated certain regions in which a
synchronous sinusoidal response could not exist. In these regions, a combination of synchronous
response and either limit-cycle instability or subharmonic response might be expected. The
addition of a side-force excitation would alter the specific range of occurrence and amplitudes of
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this behavior; however, for some values of side force this behavior might still be expected to
occur. The stabilizing capacity of the side force has already been discussed. The side force has an
additional effect of making the system behave like a linear system. This is true for relatively large
values of side force (compared to deadband and unbalance).

The subharmonic response analysis already includes the combination of unbalance
excitation and side-force excitation. However, the form of solution assumed in the procedure
does not allow for the occurrence of limit-cycle instability. The ranges of possible subharmonic
response should be valid; however, the existence of this form of solution is not guaranteed.
Limit-cycle instability may also occur in regions where subharmonic response is possible. The
results still show the effects that various model parameters will have on the subharmonic if it
occurs. This is typical of certain types of nonlinear systems where multiple solutions are
possible. In fact, for a given set of parameters, the initial conditions may determine which
solution is obtained. Other perturbations, such as the random noise, may also play a strong part
in the determination.

The results presented in this section provide general characteristics of the responses of
the nonlinear rotor system. They provide insights into the effects that the various parameters will
have and give direction for the simulation studies to be presented in the next section. The various
behaviors postulated in this section for the general system will be investigated using
simulations.

V. SIMULATION RESULTS FOR SIMPLIFIED MODEL

Numerical results were presented in the previous section for the analytical expressions
developed in section III. These results consisted of equilibrium response amplitudes, stability
conditions, and subharmonic response amplitudes. The analyses were developed for specific
excitation cases (homogeneous, unbalance, and side force) and a specific assumed form of
solution (subharmonic response). None of the analyses are fully applicable for a system under
general excitation and one whose solution form is not known a priori to be a superposition of
subharmonics. However, some general conclusions were drawn for the system in the previous
section for both the restricted cases for which the analyses apply and for the general case. In this
section, simulation will be used to demonstrate the validity of the results presented and the
conclusions drawn in the previous section. In addition, results which can only be determined
through simulation will be presented. These results were obtained using the general turbopump
model developed in appendix A. The numerical integration method used for the simulation
solution is discussed in this appendix.

A. Demonstrations of Equilibria and Stability of Restricted Cases

The first result developed was the stability condition for the zero deadband case. For
nominal parameters, this condition was shown to be p < 2.08. This is illustrated (fig. 18) by
slowly ramping the simulation through this value and observing the divergent growth of the
response beyond this value of p. A very low level of random noise was used to initiate the
instability. Fast Fourier transform (FFT) analysis of the response (fig. 19) shows that the
frequency of the instability is equal to the normalized natural frequency of the system
(1 radian/second).
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The limit-cycle equilibrium radius given by equation (128) is shown in figure 20 for
nominal values of all parameters. Simulation results are shown on this plot for certain values of
p. FFT analyses for the various values of p show that the frequency of the limit cycle is 0.48p as
predicted by equation (121). These spectra are shown in figure 21.
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Figure 20. Homogeneous equilibrium solution amplitude as p is varied. All parameters are
nominal. Solid line represents analytical solution, circles represent simulation results.

-

MOoOSD =T T0DITD

0.00 ©0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

NORHRAL IZED FREQUECNCY

Figure 21. Cascade spectral plot of simulation of homogeneous equilibrium.
Spectra taken at dwells in p profile.
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The mass unbalance equilibrium radius given by equations (78) and (79) is shown in
figure 22 for nominal values of all parameters. Simulation results are shown for a ramp up to
p = pic. Above this value, the mass unbalance equilibrium results are not valid since ro < 1 and
the solution is unstable. Simulation results are also presented for the ramp down from this speed,
illustrating the multivalued solution which exists in a small range near the resonance. In order to
explore the stability threshold of the unbalance equilibrium (p,.), a larger unbalance case was
simulated. This was necessary to generate an equilibrium solution whose value exceeds 1.0.
Simulation results are presented in figure 23 for the model operating at a steady speed (p = 1.7)
just below the stability threshold (p,. = 1.72) and then ramping to and holding at a speed
(p = 1.73) just above the threshold. A very low level of noise excitation (71 = 0.0001) was used
to perturb the equilibrium. At the lower speed, the equilibrium is maintained. At the higher speed,
the amplitude appears to diverge and then limits at a higher level than the equilibrium. FFT
analysis of the response (fig. 24) shows that the limit cycle instability has emerged along with
the mass unbalance response. This result shows that at speeds above this stability threshold
the unbalance response equilibrium cannot be maintained, and a combination of unbalance
response and limit-cycle instability results; however, it does not show the converse, i.e., it does
not show that below this threshold the combination response cannot be maintained. It only
shows that below the threshold the unbalance equilibrium without the limit-cycle instability is
possible.
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Figure 22. Mass unbalance equilibrium solution amplitude as p is varied. All parameters
nominal. Solid line represents simulation solution, X symbols represent analytical results.

The stability analysis of the side-force equilibrium showed that this equilibrium was
stable for speeds beyond the global stability threshold. This is demonstrated for a nominal case
(with no unbalance) in figure 25. This case has a low level of noise excitation (M= 0.001) to
perturb the system. The predicted stability threshold for this case (equation (116)) is p = 3.0.
The system clearly remains stable for speeds below this threshold and diverges beyond it. Since
the analysis only addressed stability in the small, it is of interest to determine how sensitive the
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Figure 25. Demonstration of side-force equilibrium stability threshold. 7 = 0.001, a = 0.0,
8y = 1.0. Predicted stability threshold is p = 3.

stability is to perturbation. This was examined by simulating the system at a constant speed of
p = 2.7 and increasing the amplitude of the noise perturbation (77) . Results from this simulation
are shown in figure 26 and show that a value of 7 = 0.47 was required to perturb the system
beyond the range of stability. This is not an exact value due to the random nature of the noise
excitation and the fact that the value was steadily increasing. An even more interesting result is
shown in figure 27. This figure presents two cases, one in which the noise is only applied along
the y axis and the other only along the z axis. The amplitude is increased as before. For the y-
axis perturbation, the system remains stable for all values of 7, up to 1.0. However, the z-axis
perturbation behaves just like the dual-axis perturbation. The system becomes unstable above
N, = 0.4. In hindsight, this should not be a surprising result. The fundamental driving force for the
instability is a tangential force. The side-force equilibrium point is primarily along the y axis and,
hence, a z-axis perturbation would impart a tangential velocity to the rotor. One might
hypothesize then that an unbalance excitation superimposed on the side-force excitation might
rather easily perturb the system beyond its range of stability. This might be expected since the
unbalance provides a large, regularly occurring tangential perturbation to the rotor. This will be
explored in a later section.

The analytical results presented in section IV showed that the stability threshold for the
side-force equilibrium increases as the magnitude of the side force decreases. This is true as
long as the side force is sufficient to cause the displacement to exceed the deadband (rg > 1.0).
This can be understood by realizing that the greatest asymmetry occurs in the linearized
stiffness coefficients when the deflection is the smallest. Gunter,!2 among others, has shown the
stabilizing capacity of asymmetry. However, due to the smaller magnitude of the side force and
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the deflection for this case, this highly stable (in the small) equilibrium might be expected to be
more sensitive to perturbation than a more highly loaded case. This is shown to be the case in
figure 28. The result is for a case of side force g, = 0.5 instead of 1.0 as was the case in figure 26.
The side-force equilibrium stability threshold for this case is p = 4.25. All other conditions are
the same and the system becomes unstable when 7 = 0.25. For increasing side force, although
the sensitivity of the stability to disturbance will decrease somewhat, the stability threshold will
also decrease and, in the limit, will approach the global stability threshold (pg;).
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Figure 28. Sensitivity of side-force equilibrium stability to perturbation.
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Subharmonic response harmonic balance results were presented in section IV for nominal
values of the model parameters and several variations of each parameter. These results give the -
amplitudes of a subharmonic if it occurs, but they do not address any perturbations or initial
conditions which may be required to initiate the response. In order to more easily obtain the
subharmonic response in a simulation, a case with a damping of { = 0.01 will be demonstrated. In
addition, the destabilizing force parameter o will be set to zero to avoid potential interaction
between the subharmonic response and limit cycle instability. The harmonic balance results are
shown for this case in figure 29. The z-axis component has a much larger amplitude than the y-
axis component for this case. The maximum value of p for which convergence was attained is
1.775. The simulation results are shown in figure 30. The transient data in figure 30b has been
bandpass filtered between the normalized frequencies 0.3 and 1.26 in order to illustrate the
amplitude of the subharmonic component. The response matches the prediction quite well up to
p = 1.775. The frequency is exactly one half the excitation frequency, and the amplitudes match
for both axes. As the speed continues to increase beyond this point, the response begins a
transition phase where it appears to be seeking a new equilibrium. A new equilibrium is then
achieved, one for which the harmonic balance procedure failed to converge. Simulation of the
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same case with noise perturbation added (7 = 0.05) yields a very interesting result (fig. 31). The
response below p = 1.775 is similar to the previous case. Above this value, however, when the
response enters the transition phase it does not arrive at the same equilibrium that it did
previously. Instead, a harmonic equilibrium (i.e., no subharmonic response) is obtained. This
result suggests that the subharmonic solution above p = 1.775 is not very stable. This might
explain why the harmonic balance procedure fails to converge to a solution in this speed range.
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Figure 29. Subharmonic response solution versus p.6=0.0,{=0.01.
Magnitudes of y- and z-axis components.

B. Interaction Between Limit Cycle and Mass Unbalance Response

The previous section dealt with the restricted cases for which equilibria and stability have
been determined analytically. These cases assume a specific excitation form and/or a specific
form for the solution. This section and those that follow will deal with cases for which the
assumptions do not apply.

The mass unbalance equilibrium simulation was presented in figure 22. This case was
restricted to speeds below py. since this equilibrium (ro > 1.0) would be unstable beyond that
point. Proceeding beyond this point results in a combination of unbalance response and limit cycle
instability. This is shown for the same model parameters in figure 32. The initiation of the limit
cycle is most clearly evident from the cascade spectral plot. The frequency of the limit cycle is
seen to be approximately equal to op; however, the unbalance excitation does alter it somewhat.
Modulation frequencies of the excitation frequency and the limit cycle frequency can also be
observed in the spectral data. As predicted by Day,!4 these frequencies can occur at all multiples
of the difference between the two, plus or minus the limit cycle frequency. The system in this
case possesses a unique solution. For p < py, the only possible solution is the unbalance
equilibrium. For p > py, the only possible solution is the combination solution.

44



22.

20 .

~

FOC —=—M 33D

<

mMLZXZODWvmD

~

muwZzoovouMmx

Figure 30.

. -5p p
° R N,
.
- A
0 L -
| " A
. .
. g
s A
5 o~ S, N
p »- e NI
— AL
] \ S —
] — —A
e W
5- — AL
—A
¥
0- S
I
— 4
- _)é/&
AT
° C
)
.5 O, N A
. N ]L
1 . -
0- 1 o
) e P

0.00 0.25 0.50 0-75 1.00 1.25 1.50 1.75 2.00 2.25 2.%50

NORHNL 1 ZED FREQUENCY

(a) Cascade spectral plot.

4
3
4
{
0
-1
-2
-3
-4
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
RHO
S
4
3
2
|
0
..l
-2
-3
4
-5
1.3 1.4 1.5 1.6 1.7 1.8 I.9 2.0 2.1
RHO

(b) Response versus p.

Simulation of subharmonic response corresponding to figure 29.
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with noise excitation added (7 = 0.05).



-

MOC == D

<

mwmZoVDvemMxT

Figure 32.

o

w

o

NORHAL 1ZED FREQUENCY

(a) Cascade spectral plot.

RHO

(b) Response versus p.

Interaction between limit cycle and mass unbalance response.

Simulation results for a = 0.5.

47



Another mass unbalance equilibrium was presented in figure 23. This solution is for a
case of increased unbalance (a = 1.0). For this case, the equilibrium radius exceeds the deadband
(ro > 1.0). This allows for a stable equilibrium beyond the previous limit of p = pj.. The stable
equilibrium is possible for speeds up to the equilibrium stability limit p,. = 1.72. This was
demonstrated in figure 23. Although the stable equilibrium is possible up to p = p,, it is not
guaranteed to be a unique solution. For values of p greater than p;., a combination of unbalance
response and limit cycle instability is possible even though a stable equilibrium is also possible.
This is illustrated in figure 33 by beginning where the simulation of figure 23 ended and ramping
back down into the potentially stable region. The limit cycle is maintained in this region down to
p = 1.45. To verify that the response is not merely the transient decay of an unstable response at
higher speeds, the ramp down is stopped at p = 1.5 and the limit cycle continues (fig. 34). The
absence of the limit cycle below p = 1.45 suggests that the unbalance excitation introduces a
threshold between py. and p,. below which the combination response is not possible. The limit
cycle can also be obtained in this region by perturbation. Figure 35 shows a case where random
noise excitation is used to perturb the system (7= 0.1). The limit cycle response is initiated in
this case at about p = 1.6 which is below p,.. As speed continues to increase to p = 2.0, the limit
cycle instability increasingly dominates the response. The amplitude grows as predicted by the
homogeneous analysis and the frequency becomes equal to op.

3 , l.ll”””

Y
1
R
E
S
P
0
N
S 1
E -
_2 1
_3 T
_4 T T T T T ' T l T l T 1
1.30 1.35 1.40 1.45 1.50 .55 1.60 .65 1.70
RHD

Figure 33. Nonuniqueness of unbalance equilibrium solution. Ramp down from
p=173. pi. = 1.04, pye = 1.72, 1 = 0.0001.

48



i

<

MW Z00DLIM =D
i

]
~N

A i

AT
21000 23000 25000 27000 235000 31000
22000 24000 26000 28000 30000
DIMENSIONLESS TIME

T T T T T T T T

Figure 34. Repeat of simulation of figure 33 with dwell on ramp down at p = 1.5
(dimensionless time equal 24,150).

C. Interaction Between Limit Cycle and Side-Force Response

. .le stabiiizing capacity of the side force was explored in an earlier section. The effects of
side force on limit cycle instability will be addressed here. Since the side force can stabilize the
system at speeds greater than the global stability threshold, one might speculate that it could
also suppress the limit cycle instability that can occur at speeds below this threshold. Examples
of this are presented in figures 36 through 40. For each of these figures, the simulation has no
unbalance excitation. The side force is initially zero and is slowly ramped up to a maximum and
then back down to zero at the same rate. ~

Figures 36 through 38 represent three different values of p: 1.25, 1.75, and 2.0,
respectively. The maximum side force for each is 3.0. The simulation was initiated by quickly
ramping to the operating speed and allowing the limit cycle to achieve steady-state conditions
before the side force was applied. For the first two cases, the response exhibited a hysteretic
behavior. While increasing the side force, a value was reached which caused the limit cycle to
cease. While decreasing the side force, the limit cycle remained suppressed until a lower value of
side force was reached. The more unstable case (p = 1.75) required more side force to suppress
the limit cycle on the up ramp than did the case with p = 1.25. For the third case (p = 2.0), the
maximum side force (g, = 3.0) was not sufficient to suppress the limit cycle. This case was
suppressed for a side force of approximately 6.0. With the larger maximum side force, the system
exhibited the same hysteretic behavior as in the other cases. It is interesting to note that the
limit cycle reinitiates at about the same value of side force on the down ramp for all three cases.
This corresponds to the value for which the side force is insufficient to displace the rotor beyond
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the deadband. Although the limit cycle suppression occurs at different values of side force, in
each case it occurs approximately at the value where the rotor trajectory passes within the
deadband zone. In other words, if the magnitude of the deflection vector falls below 1.0 during a
portion of each period of the limit cycle, suppression of the limit cycle is imminent. The sensitivity
of the suppression and reinitiation thresholds to noise perturbation is also of interest. Figure 40
shows the same system as figure 37 for two cases of noise excitation, 77 = 0.1 and 17 = 0.5. The
first case shows little effect from the noise. The second shows a small reduction in the side force
required to suppress the limit cycle (from =1.15 to =0.95). It also shows a small increase in the
reinitiation threshold (from =0.3 to =0.4). One final observation that should be made for these
cases is that the frequency of the limit cycle is relatively unaffected by the magnitude of the side
force. This can be seen from the cascade spectral plot of the p = 1.75 case shown in figure 41.

D. Interaction Between Limit Cycle and Subharmonic Response

The capacity of mass unbalance and side-force excitation to inhibit limit cycle instability
has been explored for each excitation individually. The effect of these excitations applied
simultaneously will now be explored. One effect that is anticipated is the entrainment of the limit
cycle frequency by the subharmonic response frequency. This is only possible for this system
when both excitations are present since both are required to produce the subharmonic response

phenomenon.

The approach now taken is to repeat the previous numerical experiments (figs. 36 through
39) with mass unbalance added. This will be done for two values of the unbalance parameter, a =
0.5 and a = 1.0. The effects of noise will also be explored. Figures 42 through 44 present the
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results for a = 0.5. In figures 42 and 43, p has values of 1.25 and 1.75, respectively, and g, has a
maximum value of 3.0 as before. In figure 44, p has a value of 2.0 and g, has a maximum value of
10.0. The results for these cases are similar to the side force only cases. One major difference is
the entrainment of the limit cycle by the subharmonic response. In figure 42, this occurs almost
instantly as the side force is applied. Comparing figure 43 with the corresponding case with no
unbalance (fig. 37), it is clear that the limit cycle transitions to subharmonic at a value of &y which
is less than the value which suppressed the limit cycle in figure 37 (=0.75 versus =1.25). In
addition, the subharmonic response is maintained beyond the limit cycle suppression value (up to
gy = 1.75). Upon decreasing the side force, the subharmonic and limit cycle remain suppressed
until a lower value of side force is reached. Adding noise affects this behavior as shown in figure
45 (M = 0.5). The reinitiation occurs for larger values of side force than without the noise. The
cascade spectral plot for this case (fig. 46) shows the distinct frequency shift that occurs when
the limit cycle becomes entrained. The case with p = 2.0 (fig. 44) does not demonstrate the
entrainment. This case behaves almost identically to the corresponding case without unbalance
(fig. 39) with a small harmonic component superimposed due to the unbalance excitation. The
absence of the subharmonic is due to the fact that p = 2.0 is above the range of possible
existence of the subharmonic, as shown in figure 13.

The results for the same cases with increased unbalance (a = 1.0) exhibit somewhat
different behavior. The low speed case (p = 1.25) does not exhibit any limit cycle instability. This
is due to the existence of a stable unbalance equilibrium for this speed. The lack of a one-half
subharmonic is due to the fact that p = 1.25 is below the range of possible existence. As the side
force increases, a low amplitude two-thirds subharmonic develops for a small range of side force
when noise excitation is present (1 = 0.5). The results are shown in the cascade spectral plot in
figure 47. The intermediate speed case (p = 1.75) exhibits subharmonic response almost
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Figure 45. Interaction between limit cycle and subharmonic response.
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immediately after the initiation of the side-force ramp. Due to unbalance excitation effects, the
limit cycle frequency ratio is very near 0.5 for this case. The subharmonic is suppressed when the
side force exceeds the value for which existence is possible. The subharmonic reinitiates at a
lower value when the side force is decreased. These results are shown in figure 48. The high
speed case (p = 2.0) again exhibits only limit cycle instability since it falls beyond the range of
possible subharmonic. The results are very similar to the previous cases (a = 0.0 and a = 0.5)
and are shown in figure 49.
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Figure 48. Interaction between limit cycle and subharmonic response. Cascade spectral plot of
response. Spectra taken in dimensionless time increments of 400. Maximum g, = 3.0,
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E. Effects of Operating Profile on Interacting Responses

The effects of the unbalance, side force, and combined unbalance and side force on the
limit cycle instability have been demonstrated. The results have shown a strong dependence on
initial conditions and perturbations. This is indicated by the hysteretic behavior during the side-
force ramp up and back down, for example, and by the sensitivity to noise perturbation. These
results were obtained using certain numerical experiments where parameters were intentionally
varied in order to gain insight into the response of the system. These variations were not
necessarily representative of actual operating profiles of a turbomachine. Due to the sensitivity of
the system to initial conditions, it is important to consider realistic operating profiles to assess
the potential for the occurrence of limit cycle behavior or subharmonic response. This will be
accomplished using a series of simulations where speed is ramped up and back down while the
other system parameters are held fixed. The simulations are initialized by rapidly ramping speed
from zero to a value of p = 1.0. Speed is then held constant for a period of time. The side force
begins at zero initially and ramps to its steady value somewhat slower than speed. It reaches its
maximum at the end of the steady hold time for speed. Speed is then ramped up to p = 2.0 and
back to p = 1.0 while the side force remains constant. These profiles are shown in figure 50. This
approach allows the system to achieve a steady-state initial condition at a speed which is
outside the range of limit cycle or subharmonic response. The maximum value of the side force,
the unbalance, and the random noise parameter are the model parameters that will be varied in
this series of experiments.

The first three cases examined all have unbalance magnitudes of a = 0.5. The first has a
side force magnitude of g, = 1.5. For the second gy = 1.0 and for the third g, = 0.5. Results for the

first case are shown in figure S1. This case also has random noise perturbation (M = 0.5). No
limit cycle or subharmonic occurs for this case. A low-level response of the system resonance to
the noise excitation is visible in the plot. Without the noise excitation this case exhibited only
synchronous harmonic response to the unbalance excitation. This case represents a case similar
to that of figures 43 and 45. In the earlier simulations, speed was held fixed and the side force
was varied while the converse is true in the current simulation. Examining the response in figure
45 at a value of g, = 1.5 shows that a subharmonic existed on the up ramp but only the
synchronous harmonic existed at this value on the down ramp. These results indicate that the
initial conditions and/or the perturbation used in the current simulation were not suitable for
initiating the subharmonic response. The second case (gy = 1.0) also failed to exhibit any
nonsynchronous response in the absence of noise. With noise excitation (1 = 0.5) however, both
subharmonic response and limit cycle instability are observed. These results are shown in figures
52 and 53. The subharmonic initiates at p = 1.6. The response transitions to limit cycle instability
above p =~ 1.8. This is approximately the upper limit of possible subharmonic response for this
case. For the case of low damping and no cross-coupled stiffness examined previously (figs. 29
and 30), the response in this region appeared to be seeking a subharmonic equilibrium that was
not predicted by the harmonic balance procedure. When noise excitation was added (fig. 31) this
did not occur. The current results suggest that for a system which has cross-coupled stiffness of
the type addressed here (o near 0.5), the response will transition to the limit cycle instability in
this region and not arrive at the weakly stable subharmonic solution. This would be expected
since the system is moving very close to the global onset speed of instability pg;. The third case
(gy = 0.5) behaves very similarly to the second. The results are shown in figures 54 and 55. One
significant difference is that noise excitation was not necessary (o initiate the subharmonic
response. The lower value of side force causes the displacement to fall within the deadband
(r < 1.0) which perturbs the system to such an extent that the subharmonic is initiated. Once the
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subharmonic is initiated, it transitions to the limit cycle when p exceeds the range of possible
subharmonic. The only other difference noted is in the specific values of p at which transition
occurred.

The three cases just examined were repeated with an unbalance value of a = 1.0 instead
of a = 0.5. The results are shown in figures 56 through 61. For each of these cases, the
subharmonic was initiated and transitioned to limit cycle instability without the noise
perturbation. When the side force is increased to g, = 2.0, noise is necessary to cause the
subharmonic response to initiate (figs. 62 and 63).
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Figure 56. Effects of operating profile on interacting responses. gy = 1.5, a = 1.0, and 7 =0.0001.
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Figure 62. Effects of operating profile on interacting responses. g, = 2.0, a = 1.0, and n =0.5.
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F. Effects of Other System Parameters on Interacting Responses

The effects of speed, side force, mass unbalance, and random noise on the interacting limit
cycle and subharmonic response have been explored. The effects of the cross-coupled stiffness
parameter o, the nonlinear stiffness parameter ¥, and the damping parameter { are also of
interest. The previous case with g, = 1.0 and a = 1.0 (figs. 58 and 59) will be used as the basis
for making variations in these other system parameters.

The effects of ¢ were examined by changing its value from the nominal of 0.48 to 0.40 and
0.52. Results of the first case are shown in figures 64 and 65. The maximum speed was increased
to p = 2.5 for this case since that is the value of the global instability threshold. Random noise
was used to increase the probability of initiation of potential subharmonic response or limit cycle.
A subharmonic response occurs for this case in the speed range where it can exist. When this
range is exceeded, the subharmonic disappears and no limit cycle appears. This is in contrast to
the previous cases where the subharmonic transitioned to a limit cycle. For this value of o
however, the destabilizing force is insufficient to overcome the stabilizing capacity of the side
force. As speed is increased and the system becomes less stable, the limit cycle initiates at a
frequency of ~op. This occurs at a higher speed than in the cases with the nominal value of o.
There are, therefore, two distinct regions of speed where subharmonic response and limit cycle
instability individually occur when o = 0.40. The case with o= 0.52 is shown in figures 66 and 67.
The behavior here is similar to the baseline case except for the obvious difference in the limit
cycle frequency (=0.52p). One other difference is that the global instability limit (pg; = 1.92) is
just slightly above the upper limit of possible subharmonic response. This causes the transition
from subharmonic to limit cycle to occur just before the onset of divergence. This simulation was
executed with a ramp rate half that of the previous cases in order to identify the transition.
Another difference is that the transition back to subharmonic response on the ramp down exhibits
considerably more hysteresis than the previous cases. In other words, the range of speed for
which either response can occur is greater.

The effects of ¥ were examined by changing its value from the nominal of 0.75 to 0.50 and
0.25. These values represent progressively more linear cases. The results for y= 0.50 are shown
in figures 68 and 69. The general characteristics of the response are the same as the nominal
case. As predicted by the subharmonic response analysis, the subharmonic remains for higher
speeds and has a lower amplitude. As predicted by the homogeneous limit cycle analysis, the
limit cycle has a lower amplitude also. The results for y = 0.25 are shown in figures 70 and 71.
This case did not develop either subharmonic response or limit cycle. This is due to the very
narrow range of speed and low amplitude for potential subharmonic and the low amplitude for
potential limit cycle. Since this system is nearly linear, this might also have been intuitively
expected.

The effects of ¢ were examined by changing its value from the nominal of 0.10 to 0.05 and
0.20. Tt should be noted that when { is changed the cross-coupled stiffness is also changed
proportionately according to equation (125). The results for { = 0.05 are shown in figures 72 and
73. The only difference noted is that the transition from subharmonic to limit cycle occurs at a
higher speed than in the nominal case. This is due to the fact that the upper limit of potential
subharmonic is higher for this case (fig. 16). The results for ¢ = 0.20 are shown in figures 74 and
75. As might be expected, the transition occurs at a lower value of speed for this case.
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G. Nonuniqueness of Solutions

The nonuniqueness of either the subharmonic response solution or the limit cycle solution
when mass unbalance and side force excitations are applied simultaneously has already been
indicated by the hysteretic behavior of some of the simulations. This occurred for both side-force
ramps and speed ramps. Results for another simulation which clearly illustrates this are shown
in figures 76 and 77. This case is the same as that shown in figures 58 and 59 (a = 1.0, g, = 1.0,
{, o0, and ynominal) with two exceptions. First, random noise (1 = 0.5) has been added.
Second, the speed profile has been altered to dwell on the up ramp at p = 1.845 and remain at
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Figure 76. Nonuniqueness of interacting response solution. Dwell in operating profile at
p = 1.845 (dimensionless time equal 12,000). g, = 1.0,a =1.0,and 1 =0.5.
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Figure 77. Cascade spectral plot of figure 76. Spectra taken in dimensionless time increments
of 400. g, =1.0,a=1.0,and 7 =0.5.
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that value for the remainder of the simulation. From the figures it can be seen that the response
is initially a subharmonic. After some time it changes to limit cycle. Some time after this it
changes back to a subharmonic. All model parameters are fixed during this time period. The
random noise has the effect of superimposing a variation on the side force. This behavior of
changing back and forth between solutions when no apparent change has occurred in the system
is very significant when reviewing test data. This will become more apparent when test data
from the SSME HPFTP is presented in section VL

H. Effects of Mass Unbalance on the Stability of Side-Force Equilibria

The stability of the side-force equilibrium was analyzed in section III and demonstrated
with simulations earlier in this section. The possible effects of mass unbalance perturbing the
stability of this equilibrium were discussed. The effects have been explored using simulations of
the nominal model with g, = 1.5 and two values of unbalance (a = 0.5 and a = 1.0). The stability
threshold for the side-force equilibrium in this case is p = 2.7. Speed was ramped from p = 1.0to
p = 3.0 after initiating the simulations as discussed previously. Results for both cases are
presented in figure 78. Results for a = 0.5 show that this value of unbalance does not perturb the
equilibrium beyond its range of stability. It remains stable for values of p up to 2.7. Fora = 1.0,
the unbalance is sufficient to initiate a subharmonic response at p = 1.6. As speed increases, this
transitions to limit cycle instability at p = 1.9. Now the system is in a limit cycle instability when
the speed increases beyond the global instability threshold (p,; = 2.08) and the response
diverges. The effect of the unbalance is to alter the state of the system when the global
instability threshold is crossed. In another sense, the subharmonic response causes the initiation
of the limit cycle which diverges when the threshold is crossed. If the unbalance and side-force
parameters are such that the subharmonic does not occur, the side force can stabilize the system
beyond the global threshold even in the presence of unbalance and noise perturbation.
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The behavior of the model under general loading conditions has been characterized in
terms of its behavior under certain restricted conditions. These restricted conditions are the
homogeneous response (which describes the limit cycle behavior), the mass unbalance
equilibrium, the side-force equilibrium, and the general loading case with the assumption of
harmonic and subharmonic response. These results will be extended to the SSME HPETP in
section VL.

VI. EXTENSION OF RESULTS TO COMPLEX MODEL

The previous sections have dealt with a simplified model of a turbopump in order to
enhance the understanding of the basic phenomena being studied. The objective of this section is
to demonstrate that these results extend to a more complex, realistic model of an actual
turbopump. This will be achieved by examining the HPFTP of the SSME. Test data will be
presented for cases where the phenomena appear to have occurred. Analyses and simulations of
a model of the HPFTP will also be discussed.

A. Description of SSME HPFTP

The SSME is manufactured by Rockwell International, Rocketdyne Division for NASA. It
is a liquid hydrogen/liquid oxygen staged combustion rocket engine. The primary components of
such an engine are the main combustion chamber and nozzle, the high pressure turbopumps
which feed the fuel and oxidizer to the main combustion chamber, and the combustion system
which drives the turbopumps. In the case of the SSME, each pump has its own combustion
device known as a preburner. The fuel is partially burned in these preburners (oxygen/hydrogen
mixture ratio approximately one to one) and the resulting combustion gases drive the turbines.
These gases then proceed to the main chamber where they are completely burned according to
stoichiometric balance (mixture ratio approximately six to one). A schematic diagram of the
propellant flow is shown in figure 79a. The HPFTP is shown in figure 79b. For engine operation
at 109 percent of rated power level, the HPFTP runs at approximately 36,600 r/min, depending on
actual engine performance. It consists of a three-stage centrifugal pump section which is driven
by a two-stage turbine. The rotor is supported primarily by two pairs of angular contact ball
bearings, one pair on each end. The two-pump interstage seals also provide significant restoring
forces for relative lateral rotor motion. These seals provide the majority of the damping and
cross-coupled stiffness forces. The turbine section provides significant additional cross-coupled
stiffness due primarily to the Alford effect. The Alford effect is a variation in the aerodynamic
efficiency of individual turbine blades as the turbine disk moves eccentric with respect to the
stator. The blades on one side will be more efficient than those on the other due to their smaller
tip clearance. The net effect is a tangential force proportional to the radial displacement which is
modeled as a cross-coupled stiffness. Additional stiffness, damping, and cross-coupled stiffness
forces arise at the turbine interstage seal. The impellers and their associated seals produce
forces as well; however, their magnitudes are much smaller than the pump interstage seal forces.
These forces will be neglected here in order to simplify the model. The error introduced by doing
$0 is no greater than the error due to the uncertainty in the dominant pump interstage seal and
ball bearing forces.

The nominal data used to define the HPFTP model used in this study are contained in
appendix B. These data were adjusted within their uncertainties in order to achieve the desired
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behaviors as observed in tests. The adjustments are discussed in the section dealing with model
results. These data were provided by the turbopump manufacturer (Rocketdyne) with the
exception of the pump interstage seal cross-coupled stiffness. This data has been replaced by a
function of the form of equation (125). The damping value supplied by the manufacturer is
multiplied by the shaft angular velocity and then by the destabilizing force parameter o. This
simplifies the process of relating the HPFTP model results to the simplified model results.

The model for the HPFTP is more complex than the single mass model in several
respects. One of the most obvious differences is the addition of the housing dynamics to the
model. Another distinction is that all parameters are distributed along the axis of the rotor. The
support characteristics (both linear and nonlinear), rotor and housing mass and stiffness
properties, and the excitation forces all have independent (discrete) distributions along the rotor,
in general. These differences are complicating enough, however, the most significant complexity
is not as obvious. Virtually every parameter in the model varies with turbopump operating speed
either directly or indirectly. The rotor and housing free-free dynamic characteristics and the mass
unbalance distribution are exceptions. The stiffness and damping coefficients and the side-force
excitation vary either with speed directly or with engine power level (which can be related to
speed). The clearances, geometric eccentricities from centerline, and random noise excitations
would be expected to vary in the actual machine. These variations are unknown, however, and
are not prescribed in the model. The fact that they probably occur must be recalled when
interpreting test data and simulation results. Finally, simply the number of parameters in the
model make interpretation of results difficult. The same result or trend could probably be obtained
with more than one set of parameters (or "recipe").

B. HPFTP Test Data

Development of the SSME began in 1971. High power level testing began in 1978. Since
that time hundreds of engine tests have been performed yielding massive amounts of data.
During the course of the engine's development, the design of the HPFTP has evolved and there
are many different configurations that have been tested. The subsynchronous vibration problems
that motivated this work have changed with the design changes. An in-depth review of the
history of the problems and the design changes would take volumes, however, Hawkins!?
provides a good summary. There are three primary conclusions with relevance to this work which
can be drawn from the historical data. First, the occurrence of the subsynchronous vibration, its
amplitude, and its frequency are erratic. Only a certain percentage of all tests exhibit the
phenomena and the frequencies and amplitudes vary. The frequencies fall within the range of 47
to 56 percent of rotor speed for all configurations and 47 to 52 percent for the current
configuration. Second, configurations with higher side forces do not exhibit the phenomena as
often and the amplitudes tend to be lower. The side-force differences are due to changes in the
turbine discharge section which altered the pressure distribution in the turbine section. Third, the
increased stiffness of the currently used pump interstage seals reduces the amplitudes of the
phenomena. The initial seals used in high power level testing were three step, smooth seals and
the current seals are straight, smooth seals. One might expect that these configurations would
also have a lower frequency of occurrence; however, they were generally tested to higher power
levels at which they are less stable.

In most tests, the rotordynamic instrumentation on the HPFTP has been limited to
accelerometers mounted externally on the housing. This makes it somewhat difficult to determine
what dynamic behavior of the rotor might be creating a particular vibration response on the
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Figure 80. Engine power level profile for SSME test 750-270.

housing. Specially instrumented units have been built on occasion which have internal rotor
displacement measurements. One test of one of these units has been selected for discussion
here. The HPFTP in this test displayed significant levels of subsynchronous vibration with very
interesting characteristics. The test was designated as 750-270 and the HPFTP was unit
number 2708R1. The turbopump was instrumented with radial displacement measurements in
two axes at the seal between the first and second pump stages. It also contained the normal set
of external accelerometers.

The power level profile for test 750-270 is shown in figure 80. After throttling down to 80-
percent power level, the level was slowly increased to 109-percent power level. The actual
profile was a series of steps of one-half percent power level with 3-s dwells at each step. Upon
reaching 109-percent power level at 238 s, the level was held constant until 271 s. During this
period, the liquid oxygen tank pressure was reduced (vented) to simulate flight conditions. This
lowers the liquid oxygen inlet pressure to the low pressure oxidizer turbopump and, hence,
lowers the liquid oxygen outlet pressures throughout the system. The engine controller
compensates for this perturbation by adjusting valves in the system and maintains system thrust
(power level) and mixture ratio. The liquid oxygen vent schedule is superimposed on the power
profile in figure 80.

The response of the HPFTP to the power profile described above is shown in figures 81a
through 81g. The figures contain frequency spectra of one of the radial displacement
measurements. These data were provided by the engine manufacturer (Rocketdyne). Many
measurements and many methods of processing the data are available. This measurement is
representative of the response of the HPFTP, and this method of processing yields a concise
representation of the important features of the response. This series of plots presents a
sequence of frequency spectra beginning at 170.8 s and continuing until 272.7 s. Each spectrum
represents nine spectral averages (to reduce noise). The frequency resolution of the spectra is
5.0 Hz, therefore, each individual spectrum requires 0.20 s of data for analysis. Each plot of the
average of nine spectra, then, represents 1.80 s of data. The samples are taken at 3-s intervals
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in order to correspond to the dwells in the profile. The spectra are arranged in the figures from
bottom to top for increasing time. The distinct spike near 600 Hz is the synchronous component
due to mass unbalance excitation. A line has been superimposed on the plots at the frequency
corresponding to one-half this synchronous frequency. This is to highlight any occurrence of
subharmonic response.

The spectra in figure 81a are typical of responses earlier in the profile. The noise in the
system is exciting the first resonance; however, neither subharmonic response nor limit-cycle
instability appear to be present. It should be noted that the vertical axis scale is logarithmic for
these plots. As the power level increases, figures 81b through 81e show the inception of one-half
order subharmonic response. The subharmonic increases in amplitude throughout this interval.
The last two plots in figure 81e occur after the power level is held constant at 109 percent. All
plots in figure 81f are also at this constant power level. The first plot in this figure shows that the
system is still exhibiting subharmonic response. The remaining plots indicate a transition
between subharmonic response and limit-cycle instability. This is very similar to the behavior
described in section V (figs. 76 and 77) for the simplified model. The amplitude increases
significantly as the transition occurs. The modulation frequency of the excitation frequency and
the limit cycle frequency which was discussed in section V (fig. 32) is evident during the
transition. Figure 81g shows the fully developed limit-cycle behavior. The frequency of the limit
cycle is approximately 47 percent of the rotation frequency. The last two plots in this figure occur
after power is reduced from 109 percent and are not of interest here. It should be noted that the
liquid oxygen venting was initiated during the period of fixed power level when the transition from
subharmonic response to limit cycle occurred. Although an exact mechanism is not known, the
venting may have created a small perturbation to the HPFTP which initiated the transition. Also,
as demonstrated in section V, the system noise itself may have been sufficient to initiate the
transition and the timing with the vent profile may have been just coincidence.

The test data described above can be interpreted in the context of the analytical and
numerical results of the previous sections. The machine appears to be operating at the upper limit
of the range of possible subharmonic response. For the simplified model, this upper limit ranged
from about 1.7 to about 1.9 times the zero deadband linear system resonance, depending on the
system parameters. In addition, the transition to limit cycle instability with higher vibration
amplitudes indicates that the machine is approaching the global onset speed of instability as
defined in section III. For the simplified model, the 47-percent limit cycle frequency ratio would
imply that the global onset speed would be 2.13 times the linear system resonance. For the 109-
percent power level speed of approximately 36,300 r/min, using the upper limit of possible
subharmonic given above yields a linear system resonance between 19,105 r/min (318 Hz) and
21,353 r/min (356 Hz). The corresponding range of onset speeds of instability is 40,694 r/min to
45,482 r/min. These values will be used as a guide in assessing the results from the
mathematical model.

C. Linear Analysis Results

The mathematical model results can be separated into linear analysis results and
nonlinear simulation results. The primary linear analysis results of interest here are the
eigenvalues and eigenvectors of the linear system obtained from the zero deadband assumption.
Since the parameters of the system model are functions of operating speed, the eigenvalue
problem must be solved for many speed values in the range of interest. For each different value of
speed, the entire set of eigenvalues and eigenvectors (in this case, 39 complex conjugate pairs)
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are recalculated. In general, since the system matrix is different at each speed, the eigenvalues
and vectors for one speed may not be related to those at another. However, there is a known
relationship between the elements of the system matrix at different speeds. Because of this, one
would expect to be able to relate the system characteristics for one speed to those at another
speed which is relatively close to the first. This is in fact the case, however, it is not entirely
straightforward. As speed is varied, the eigenvalues tend to move along loci whose patterns
become apparent by visual observation. The associated eigenvector of an eigenvalue at one
speed for a particular locus is usually very similar to that at another speed on the same locus.
This is not always the case, however. For large speed changes, the dynamics of the system can
change dramatically, and there may be no recognizable relationship between eigenvectors at one
speed and those at another. This may be true even though the eigenvalues traced out clearly
identifiable loci when migrating as speed varied. Another difficulty is when two loci intersect or
nearly intersect. In these instances, the characteristics of the eigenvectors associated with the
loci may switch. This type of behavior is observed in the results from the HPFTP model. When
this occurs, the only meaningful association between eigenvalues at one speed and those at
another must be based on similarity of their associated eigenvectors, not on the patterns of their
loci.

The eigenanalysis results can be presented in several ways. One way is to plot the
eigenvalues in the complex plane where the locus patterns are evident (root locus). This
presentation has the disadvantage that the corresponding speeds are not readily visible. Another
way is to plot the real and imaginary parts of the eigenvalues versus speed. This presentation
does not provide as much visibility to the loci patterns but clearly indicates the speed
correspondence. Yet another method is to plot the critical damping ratio associated with each
pair of complex roots versus speed. This provides some "calibration" for the real part of the
eigenvalue indicating its relative stability. The complex eigenvectors are presented in the manner
described in appendix A. Due to the large number of eigenvalues for this system, eigenvalue and
eigenvector information will only be provided for those eigenvalues related to the limit cycle
instability and subharmonic response.

The linear analysis (zero deadband assumption) results for the HPFTP using the nominal
data discussed in appendix B are presented in figures 82 through 84. These figures present the
root loci, imaginary components, and critical damping ratio, respectively, for two eigenvalues
designated No. 3 and No. 4. On the root loci (fig. 82), the "X" symbol indicates the starting speed
(10,000 r/min) and each circle corresponds to a 1,000-r/min increment. These eigenvalue loci
exhibit the switching behavior discussed previously. At the higher speeds, the eigenvector
associated with eigenvalue No. 3 possesses the characteristics of the unstable behavior. This
eigenvector is shown in figure 85. This figure displays the relative component (rotor minus
housing) of the eigenvector. The rotor precesses in a forward direction (except at the pump end
bearings) with only a small amount of housing motion. The motion can be described as a rigid
body translation with superimposed rotor flexing. From figures 82 and 84, it can be seen that the
locus for this eigenvector is moving toward instability. From figure 83, the frequency is observed
to vary between 250 and 360 Hz with a value of about 335 Hz at the 109-percent power level
speed (36,300 r/min). At the lower speeds, the eigenvector associated with eigenvalue No. 4
possesses the characteristics of the unstable behavior. The locus for this eigenvalue heads
toward the right half plane initially. The critical damping ratio reaches a minimum at 25,000 r/min
and the locus then reverses direction. This is due to the switching which takes place between
this locus and the one for eigenvalue No. 3.
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While systems of this sort are generally less stable at higher speeds, the interaction
between eigenvalue loci creates a range of speed where stability is actually enhanced. This
particular occurrence appears to be related to the asymmetry in the housing; in particular,
asymmetry in the frequency-dependent dynamic impedance of the housing which is an integral
part of the rotor support. The stabilizing capacity of asymmetry is well known and documented
(see references 12 and 18, for example). The housing impedance asymmetry effect can be shown
by modifying the housing model so that the rotor dynamics do not "tune” with the housing
dynamics and create this behavior. Figure 86 shows the root loci for the case where the
frequencies of the third and fourth housing input modes are increased 20 percent. For this case,
the switching does not occur, and the locus for eigenvalue No. 4 progresses fairly quickly into the
right half plane. The stabilizing capacity of the switching behavior will complicate comparisons of
the HPFTP model's behavior with the simplified model results. However, the model will not be
adjusted to remove this characteristic since it may truly be representative of the behavior of the
HPFTP.
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Figure 86. Root loci for eigenvalues No. 3 and No. 4 of the nominal HPFTP linear model
with modified housing modal data.

The linear analysis results for the nominal HPFTP model indicate that the model is too
stable to exhibit limit cycle instability. Based on the analytical results from the simplified model
there are two ways to reduce the stability of the system: increase the cross-coupled stiffness
parameter o and reduce the pertinent natural frequency (most likely by reducing the rotor
support stiffness). The first method will increase the frequency ratio of a limit cycle while the
second will not. The specific test data being examined here indicates a limit cycle frequency ratio
of 47 percent; therefore, it is undesirable to adjust the model by increasing the parameter o. The
stiffness of the bearings and seals was decreased by trial and error until suitable results were
achieved. Greater reduction was made in the seal stiffness than in the bearing stiffness in order
to maintain a strong effect from the nonlinearity (y parameter). The final values chosen were
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92 percent of the nominal bearing stiffness and 60 percent of the nominal seal stiffness. The
cross-coupled stiffness parameter for the pump interstage seals (o) was reduced from 0.6 to
0.55 and the turbine interstage seal and Alford effect cross-coupling was reduced to 75 percent of
the nominal value. These changes were based on results of simulation trials.

The linear analysis results for the modified model are presented in figures 87 through 89.
Figures 87 (root loci) and 89 (critical damping ratio) show the same switching behavior as the
nominal model. The transition occurs at a higher speed for the modified model. The frequency of
eigenvalue No. 3 is about 310 Hz at the 109-percent power level speed. The onset speed of
instability is 44,000 r/min. At the imaginary axis crossing, the frequency of the eigenvalue is
approximately 328 Hz. This translates into a ratio of 45 percent. These values compare favorably
with the guideline values inferred from the test data.
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Figure 87. Root loci for eigenvalues No. 3 and No. 4 of the modified HPFTP linear model.
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D. Nonlinear Simulation Results

The general behavior of the simplified model was characterized in terms of its behavior
under certain restricted conditions in section V. The restricted conditions were analyzed in
sections III and IV. The homogeneous equilibrium, unbalance mass equilibrium, and side-force
equilibrium and their respective linearizations provided bounds for parameter ranges where limit
cycle behavior is possible. The subharmonic response harmonic balance solution provided bounds
for parameter ranges where subharmonic response is possible. These results were based on
analytical and combined analytical/numerical solutions to the nonlinear system equations. These
approaches were rather straightforward for the simplified model. Analogous methods for the more
general and complex turbopump model have not been developed; however, the approach of using
the restricted case results to characterize the general case results is still valid. Simulation must
be used rather than analytical means to obtain the restricted case results. The HPFTP model
will, therefore, be simulated for the three restricted excitation cases analyzed for the simplified
model. The first is the homogeneous case. This case is not truly homogeneous since noise
excitation is imposed, but it will serve to characterize the lower limit, amplitude, frequency, and
global stability limit of the limit cycle behavior. The second is the unbalance mass equilibrium
case (again with noise excitation). This case will show the limits where stable unbalance
equilibrium is possible and where limit cycle will exist along with the unbalance response. The
third is the side-force equilibrium case (also with noise). This case will show the limits where
limit cycle is possible under the stabilizing influence of side force. These cases will be examined
by executing a speed ramp up to just beyond the global onset speed of instability and then back
down. A general loading case will then be examined with the same ramp profile. The response to
this loading can then be characterized in terms of the limits and characteristics of the three
restricted cases. The subharmonic response analysis of the simplified model was not based on a
restricted excitation but, rather, on a specific assumed form of solution. No special simulation
case is required to investigate this behavior. The general excitation case will be examined to
determine whether subharmonic response occurs.

Simulation results for the homogeneous case are presented in figures 90 and 91. Figure 90
displays the "z" axis relative displacement at the inboard turbine end bearing location. The top
graph shows the response to the ramp up, and the bottom graph shows the response to the ramp
down. The speed profile consisted of a 4.5-s ramp from zero to 45,000 r/min and a 2.5-s ramp
back down to 20,000 r/min. Figure 91 displays the cascade spectral plots corresponding to figure
90. Limit cycle instability initiates at approximately 25,000 r/min with a low amplitude. The
frequency ratio is about 55 percent. The amplitude increases steadily until a speed of about
32,000 r/min is reached. Between this speed and about 35,000 r/min, the amplitude decreases
slightly and the frequency ratio drops to about 47 percent. This transition corresponds to the
eigenvalue switching observed in the linear analysis. As speed is increased beyond this
transition, the amplitude increases in the same manner as the limit cycle in the simplified model.
The reverse behavior occurs on the down ramp with no apparent hysteresis. The mass unbalance
excitation case produced similar results (figs. 92 and 93). The limit cycle initiation was
suppressed until about 32,000 r/min by the unbalance equilibrium. On the down ramp, the limit
cycle was maintained until about 29,000 r/min. This is similar to the hysteretic behavior observed
for the simplified model.

The side-force excitation exhibited the greatest amount of hysteresis (fig. 94). On the up

ramp, the limit cycle did not initiate until the global onset speed of instability was reached
(44,000 r/min). On the down ramp, the limit cycle was sustained until about 35,500 r/min.
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Figure 91. Cascade spectral plots corresponding to figure 90.
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Figure 94. Nominal side-force excitation simulation results for modified HPFTP
nonlinear model. Inboard turbine bearing response.

This value represents the lowest speed for which a limit cycle is possible with the given side-
force excitation. This limit must be lowered in order to obtain general loading results which
exhibit limit cycle at the 109-percent power level speed (36,300). This was accomplished by
reducing the side force to 75 percent of its nominal value. This produced the results shown in
figures 95 and 96. The limit cycle was sustained in this case until about 31,000 r/min.

Results have been presented for the three restricted cases with bounds identified for the
occurrence of limit cycle instability. The general combined loading case will now be presented.
The initial case simulated consisted of a direct combination of the previous cases; i.e., nominal
mass unbalance, 75 percent of the nominal side force, and the same noise excitation. This case
exhibited limit-cycle behavior but did not exhibit any subharmonic response. One of the
objectives of this examination is to determine if the behavior of the simplified model
(subharmonic entrainment and transition to limit cycle) extends to the more complex HPFTP
model. In order to determine this, the mass unbalance was varied by trial and error in an attempt
to find a combination of parameters which resulted in subharmonic. Increasing the unbalance
uniformly by 50 percent produced the desired results.

Figures 97 and 98 present the time and spectral data for the response to the same profile
as the three restricted cases. As speed reaches about 30,000 r/min, limit cycle initiates at a low
amplitude with a frequency ratio just above 50 percent. At about 33,000 r/min, this limit cycle
becomes entrained by subharmonic response at the 50-percent ratio. This entrained response
transitions to a limit cycle of about 47-percent frequency above 35,000 r/min. The down ramp did
not exhibit subharmonic entrainment but behaved very similarly to the unbalance excitation case
(figs. 92 and 93). The up ramp behavior can be more clearly seen in figures 99 and 100. This case
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Figure 95. Reduced side-force excitation simulation results for modified HPFTP
nonlinear model. Inboard turbine bearing response.
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Figure 98. Cascade spectral plots corresponding to figure 97.
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Figure 99. Combined excitation simulation results for modified HPFTP nonlinear model.
Slow ramp from 32,000 r/min to 37,000 r/min. Inboard turbine bearing response.
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Figure 100. Cascade spectral plot corresponding to figure 99.
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is identical to the other except that the speed profile was altered about 32,000 r/min. For this
case, speed was increased from 32,000 r/min to 37,000 r/min in 4.5 s, the same length of time as
the original ramp from zero to 45,000 r/min. The three zones of behavior are observable in both
the time data and in the spectral data. The movement from the higher frequency ratio to the lower
frequency ratio was observed for the homogeneous case and the mass unbalance case and was
attributed to the eigenvalue loci switching behavior. However, the entrainment at the
subharmonic frequency is unique to the general combined loading case.

Another important result which was presented for the simplified model in section V (figs.
76 and 77) is the nonuniqueness of the solution. This behavior is demonstrated for the HPFTP
model by holding the speed profile for this case at 35,000 r/min. The time response for this
simulation is shown in figure 101 with an expanded portion shown in figure 102. The spectral
results are shown in figure 103. The system is clearly jumping between limit cycle entrained by
subharmonic response and pure limit cycle. The frequency of the limit cycle at this speed is close
to 0.5 due to the shift from the higher to lower ratio noted earlier. This proximity and the rapid
manner in which the transitions occur make it difficult to obtain FFT results as clear as for the
simplified model. The only change occurring in the parameters of the model is the random noise
excitation. The response remains in one form for as long as 0.3 s.

The results of the combined excitation case have clear implications related to
interpretation of test results. For one set of parameter values, the model exhibits subharmonic
response, limit cycle with a frequency greater than subharmonic, and limit cycle with frequency
less than subharmonic, all within a narrow speed range. The model also exhibited transitions
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between subharmonic and limit cycle at a fixed speed. All of these behaviors have been observed
in test data. The model results indicate that the specific ranges of occurrence, frequency ratios,
amplitudes, and transition speeds are quite sensitive to many model parameters which are not
known with much certainty. The nonuniqueness and sensitivity of the solutions can easily
account for the behaviors observed in test data.

The results of the previous sections for the simplified model have been shown to extend
to a more complex and realistic model of the HPFTP of the SSME. This was accomplished by
examining engine test data, performing linear analysis of the model, and simulating the model for
various conditions. The conclusions of this and the previous sections will be summarized in the
next and final section.

VII. CONCLUSIONS

An extensive investigation has been conducted of the interaction between limit-cycle
instability and subharmonic response in a rotordynamic system. The primary tool used in the
study was a dimensionless, normalized model of a single mass rotor. Equilibria were determined
for various excitations; linearizations and stability analyses were performed. A harmonic balance
procedure was implemented to analyze subharmonic response potential. The model was
simulated for the conditions which were analyzed and then for conditions which could not be
treated analytical. Generalization of the results to a complex, realistic model were confirmed by
examining the HPFTP of the SSME. This was accomplished using linear analysis and nonlinear
simulation and by examining engine test data. The analyses and simulations were conducted
using a general turbopump rotordynamic analysis package developed for this research. The
conclusions which are drawn from this work can be separated into two groups: conclusions
regarding the characteristics of the behavior, and conclusions regarding analysis and simulation
methods. The conclusions are summarized below.

A. Characteristics of the Behavior

The most significant conclusion from this work is the determination that subharmonic
response can entrain self-excited limit-cycle oscillations in rotordynamic systems. There is an
important implication from this conclusion. The occurrence of a subsynchronous vibration at a
frequency exactly equal to one half the shaft rotational speed is sometimes interpreted as
evidence that the vibration is only subharmonic response and is benign in the sense of instability
(subharmonic response may have adverse results due to overloading and fatigue which are
unrelated to stability). These results indicate that this interpretation should not be made in any
system in which self-excited vibration is possible. This covers virtually all turbomachinery which
operates above a system critical speed characterized primarily by rotor motion.

Another conclusion drawn from this investigation is that the behavior under given
conditions is nonunique. This is known for nonlinear systems in general; however, the specific
possible solutions were determined and demonstrated. The most striking demonstration was the
repeated transitions between limit-cycle instability and subharmonic entrainment in the presence
of random noise excitation.
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Finally, the ability of side-force and mass-unbalance excitations to suppress the limit-
cycle behavior was demonstrated. The side-force excitation may, in addition, stabilize the
system in the small for speeds beyond the global onset speed of instability.

B. Analysis and Simulation Methods

Nonlinear simulation studies typically consist of extensive studies involving numerous
variations in model parameters and excitation forces. These studies begin with the best available
estimates of these parameters and forces. One beneficial approach identified in this study is to
simulate the model with no excitation (homogeneous case) except random noise. The results of
this simulation provide a bound on the speed range in which limit cycle is possible with the
excitations applied. In addition, the amplitude for this case bounds the limit-cycle amplitudes,
and the frequency is near the frequency obtained under general excitation. These bounds provide
a basis for determining whether extensive investigation of limit cycle is needed.

The important benefit of applying representative random noise excitation was clearly
evident in this study. Without perturbation, many significant occurrences of limit cycle will be
missed. It is also important for the perturbation to be realistic so that conclusions regarding
comparisons with test data will not be erroneous.

It became evident during the conduct of this study that simulations must be conducted for
representative time durations. The transient growth of a limit cycle or the transition between
subharmonic entrainment and limit cycle might easily be missed with short durations.

C. Suggested Future Research

While many important conclusions were reached in this investigation, there remain many
unanswered questions and opportunities for further work. As with any analytical and numerical
investigation, it is important to obtain experimental verification. The engine test data provide
some verification for this work; however, a laboratory experimental program with well-defined
conditions and adequate instrumentation would provide much better verification of the
fundamental assumptions and conclusions. With regard to the HPFTP model, improvements in
the certainty of the model parameters would simplify investigations and correlation with test
data. Even with better parameter data, however, absolute certainty in parameter values is
impossible. Therefore, an extensive parametric study of the HPFTP conducted in light of the
results of this research would provide important new insight into the characteristics of the actual
machine. This should include a penetrating review of the extensive data base of engine tests.

With regard to test data interpretation, although the threat of divergent instability cannot
be ruled out when subharmonic entrainment occurs, it may be possible to deduce a qualitative
margin of stability from its occurrence. The subharmonic response analyses conducted for the
simplified model indicated that the subharmonic ceased to exist above a threshold speed that
was near, but below, twice the linear (zero deadband assumption) system resonance. The
specific value depended on the system parameters. If subharmonic occurs in the response, the
system must be operating below twice this resonance. If the destabilizing forces are known to be
characterized by frequency ratios less than one half, then the global onset speed is known to be
greater than twice this resonance. An investigation should be made into the potential for
developing such an indicator of stability. Development of analytical tools for the complex model
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which are analogous to the homogeneous equilibrium and subharmonic response harmonic
balance methods applied to the simplified model would facilitate an investigation of this. These
tools would provide characteristics and ranges of occurrence of the limit cycle and the
subharmonic response without requiring costly simulations.

Finally, a word about the basic modeling assumptions made in this work. The assumption
was made here that the rotor was supported by a combination of linear and nonlinear support
elements. The nonlinear support elements were treated as piecewise linear elements in radial
deflection with only two linear regions (i.e., one break point in the load deflection curve). One
significant situation that cannot be treated using this assumption is that of rotor-stator rubbing.
A model of rubbing interaction by itself is very similar to a bearing with deadband. The stiffness
and the clearance are usually larger than for a bearing and an addition force is included; the
tangential friction force. This interaction could be handled with the bilinear assumption with the
appropriate additions for the friction. However, the difficulty arises when there are bearings with
deadband and rub with a much larger clearance (or deadband). This combination requires
multilinear approximations. In a realistic model such as the HPFTP, these effects would be
distributed as well. The implications of this for the results and conclusions presented here would
be to introduce an additional level of potential equilibria and limit cycle instability. For example,
for speeds beyond the global onset speed of instability in the current model, the amplitude of the
vibration would grow until the rotor began to rub on the housing. This would, then, create a new
limit cycle at a higher amplitude with its own global stability limit. While general results can be
inferred by scaling the results already obtained, the application of these results to a realistic
model such as the HPFTP require careful scrutiny. The HPFTP model examined here did not
include the rub model and it produced results similar to test data. However, this might also be
accomplished using a very different "recipe” of parameters (representing a less stable condition)
which includes the rub model and its amplitude limiting effects. In order to assure that erroneous
conclusions are not drawn regarding the HPFTP, or any machinery that is known to rub, the
parametric study discussed above should include models of rubbing interaction. This should be
anchored to reality by closely examining the wear which occurs in the test hardware due to
rubbing. The mechanical work done by the rub which occurs in the model should be compared with
the observed wear. This requires the development of material wear models which relate the work
to estimated wear. In addition, the power loss due to the rub should be compared to total
turbopump power and its impact assessed using an overall engine system model. This would
determine whether the power loss would be observed in the engine performance and, if so, the
test data related to engine performance should be examined. These reality checks (wear and
power loss) would provide the guidance needed to determine which assumptions and parameter
“recipe” most accurately represent the actual machinery.
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APPENDIX A
TURBOPUMP MODEL DEVELOPMENT

Introduction

A general turbopump model has been developed in order to carry out the numerical
studies in this investigation. This model has been implemented in a package of FORTRAN
computer programs that is referred to as the Turbomachinery Rotordynamics Analysis
Package. There are three basic components to the package: a linear eigenvalue analysis
provides stability and critical speed information; a linear forced response analysis provides
steady-state response to static and dynamic loads; and a nonlinear time domain simula-
tion provides the total solution (transient and steady-state) and incorporates important
non-linear effects such as bearing clearance (deadband) and seal rubbing. The simpli-
fied model developed in chapter II can be implemented using this package by specifying
the input data appropriately. This appendix covers the development of the equations of

motion for the model and the solution procedures employed.

Conceptual Model

The turbomachinery rotordynamics analysis package is based on a conceptual model
of a symmetric flexible rotor supported in a nonsymmetric flexible housing by flexible
connection elements. This is illustrated schematically in figure 104. The rotor is charac-
terized by its free-free normal modes of vibration. Likewise, the housing is characterized
by its free interface (no rotor) normal modes. One axial rigid body degree of freedom
is included for the rotor. This is included to couple with the axial component that may
be present for each housing mode. This coupling usually takes place across a hydrody-
namic thrust balance piston. Damping is added to the rotor and housing by specifying a
damping ratio for each mode. Gyroscopic effects are included as generalized forces on the
rotor and they create coupling between the rotor modes. The normal modes of the rotor

and housing must be predetermined using structural models or other available means.
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The connection elements are typically rolling element bearings and fluidic seals and are
characterized by stiffness, damping, and inertia matrices that can contain coupling terms
between orthogonal lateral axes (cross-coupling). In general, the elements of these ma-
trices are functions of engine power level. This is caused by such factors as centrifugal
loading on ball bearings and different pressure drops across fluidic seals. Since turbopump
rotational speed is also a function of power level the stiffness, damping and inertia co-
efficients can be expressed as functions of speed. These functions can be represented in
a number of ways. In its present form the package can use two methods to define each
function: a polynominal in speed, or a table lookup. The polynomial coefficients must
be pre-determined by curve fitting tables of data for each function. The table lookup can
use linear or Hermite cubic interpolation.

The equations of motion for the turbopump system are developed by deriving the
equations of motion for the rotor and housing separately. The forces due to the relative
motion across the connection elements are then added as generalized forces acting on
the rotor and housing. The coordinate system used to define the model is an inertial,
right handed system with the z axis along the undeflected rotor centerline. The y and z
axes are in orthogonal, lateral directions. The orientation of the y and z axes is usually
determined by the structural model of the housing since the rotor is symmetric. Care
must he taken to ensure that the proper algebraic sign is used for the rotation speed

based on the right hand rule for the coordinate system.

Rotor Equations of Motion

The rotor is treated as a collection of rigid bodies. The equations of motion for
the rotor are derived using Lagrange’s equations. The kinetic energy, potential function,
dissipation function, and virtual work expression are first defined in terms of the physical
coordinates of the individual rigid bodies. These functions are then expressed in terms
of the rotor free-free normal modal coordinates. The equations of motion are obtained
by substituting these functions into Lagrange’s equations.

The coordinate system used to define the motion of an individual rigid body segment
of the rotor is shown in figure 105. The z, y, z axes define the inertial reference frame.
The z, 3, z axes define the body fixed reference frame. The Euler angles 6, 6., and 6,

are defined in the figure.
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The kinetic energy for the ! rigid body can be written as the sum of the translational

and rotational kinetic energies

T

1 1 Wz, [z:r,- I::y.- Iz:z.- Wz,
T:= §m1(33 + yzz + 212) + § Wy I!IJT. Iyy«’ Iyz.' Wy, (Al)
Wz, Iz:z.- Izy.- 122.‘ Wz,

where w;z, wy, and w; are the body axis components of the angular velocity. Since the
% axis is taken to be the axis of symmetry and each body is considered to be a body of

revolution, the product of inertia terms will be zero and equation (A1) can be written as

1 o sy, 1 1
T; = -imz(mf + 92+ )+ Ela;‘-";. + '2'11"(‘*)127- +wz,) (A2)

The angular velocity components wz, , Wy, , and w;, can be written in terms of the Euler

angle rates as follows

Wz, = ér. + éy.. sin{8,,)
wy, = 9,_,_ cos(8,,) cos(fz,) + ézl sin(6z,) (A3)
wz, = —O'y. cos(8,)sin(6;,) + 6'?2. cos(0;,)

Substituting equation (A3) into equation (A2) yields
1 .2 .9 ) 1 A A . 2 1 2 2 32
T = é—m,-(:zi + Ui+ )+ Ela' (82, + 8y, sin(f., )"+ —2-It' (9% cos®(8,,) + le) (A4)
The rotor will be constrained by the bearings to have small motion, therefore, the angles

8. and 6, can be considered to be small quantities. Substituting Taylor series expansions

for sin(6,,) and cos(8;,) into equation (A4) yields

1 ) . ) 1. . .. 63
T: = 5m,~(m3 + 92+ 33+ EIQI,HL + 1,00, (8, — ? + )
1 ‘9 92. 2 1 1 93{ 2
+ 51as0y, (6, - ER )T+ it + §]ti9§; (1-=<+- ) (A5)
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Since the kinetic energy expression will be differentiated once in Lagrange’s equations,
terms of second order in small quantities must be retained here. Neglecting terms of

higher order yields

1 . .. 1 . )
T, = %m,-(a':? + 97+ 53+ 51‘,,.03” +1,,6:.0,0. + -2-1,,.((); +62) (A6)

The total kinetic energy of the rotor is the sum of the individual kinetic energies,

T=>T (A7)

It is assumed here that the rotor is axially and torsionally rigid so that equation (A7)

becomes

T= %(Zm,)iz + % Zmi(z)? +27) + %(Z{:a,)m

+ % Z I,(62 +62)+ Q(Z 1.6, 9) (A8)

where Q replaces 6,.. Equation (A8) can be written in matrix notation as

1 1 1, . 1, .
T=-M*+_-QTI,0+ Emiy +-zTmz

2 2 2
1 . 1. . .
+ EG);-PL@y + Ee;flt@, +00J1,0, (A9)
where

M=) "m, (A10)

Y1

Y2

Yn



and similarly for z, ®y, and ©,,

Q
Q
a={. (A12)
Q
my 0 0
0 mse ... 0
m = ) - : (A13)
0 0 My

and similarly for I; and I,.
The potential and dissipation functions will be defined in terms of the rotor physical
coordinates. Since the rotor is axially and torsionally rigid, only the y, z, ®,, and ©,

coordinates will contribute to these functions. The potential function is written

T
y Ryy  Kyé, 0 0

y

_ 1 T _ 1 @z Kg,y Ka,0, 0 0 @z
V= sW KW = . 0 0 P . (A14)

@y 0 0 Kg,z K6, e)’

where k represents the rotor stiffness matrix; the upper left and lower right quadrants
are identical (symmetric rotor).
The dissipation function can be more easily treated using coordinates that rotate

with the rotor at speed . The following transformation defines the new coordinates

(o)=Lt @] () =

where
wy = { g } (A16)
"=te,) “
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"= { gc } (A1)

¢
= A19
I¢ { o, ( )
In terms of the rotating coordinates r, the dissipation function is written as

1

G:2

iTBr (A20)

Differentiating equation (A15) with respect to time gives

o B R R g (a2)

Substituting equation (A21) into equation (A20) yields

Gzé{\fvy—}—ﬂwz}T [cos(ﬂt) —sin(m)] [B,, 0 ]

w, — Qwy sin(2t)  cos(§2t) 0 B¢
cos(§2t) sin(Qt) | [ wy + Qw,
[- sin(Q) cos(R1) | | W, — Qw, (A22)

where B, and B¢ are identical and represent the damping matrix for the nonspinning

rotor. Equation (A22) can be rewritten as

y+9z Y B, By, 0 0 Y+ 0z
_ 10,+ Qo, BGU) B9<g< 0 0 Q, + 20,
C=321 i-ay 0 0 B Bg,|) i-9 (A23)
@y - 00, 0 0 Bgnc Bgng'n @y - N0,

The generalized forces acting on the rotor are treated through the virtual work
expression. The virtual work is the product of a virtual] displacement of a coordinate and
the component of a generalized force acting on the coordinate. The virtual work can be

written as

6W = Z[(F;Eiéxi + Fglé% + ‘F;|é2|) ' (61:1.63:1‘ + 6yiéy. + 62,‘6?2‘.)
+ (Tziéz, + Ty, by, + Ts ;) - (602,6z, + 68, &, + 86, & )] (A24)

118



where &, is a unit vector along the ¢ axis. Equation (A24) can be simpljﬁed to

SW = > [Febi + Fyyi + B, 6z + Tu, 805, + Ty, 08y, + Tz 66y, (éx, - éy,)

+ T, 60z, (éy, - é2,) + T2, 605, (és, - €2,) + T2, 60, (éz, - €21)] (A25)

From figure 105, the unit vector dot products are determined to be

é:_r. . éyl = éy; . éi‘. = Sin(92.) ~ 02‘, (A26)
€y -6z, = —sin(fy,) = =0, (A27)
€, €z = cos(fy,) = 1 (A28)

for small angles. Substituting equations (A26) - (A28) into (A25) and simplifying yields

W = Z[F;-‘iézi + Fybyi + Eézi + (T, = T2,0y, + Ty, 02, )60z,

+ (1,6, + Ty,)60,, + T, 692.,] (A29)

The torques Ty, and T, will be linear functions of the displacements §,, and 6. . Since
these angles are considered to be small quantities, the products of the torques T, and
T,. and these angles become proportional to terms of second order in small quantities.
Neglecting terms of second order and higher in small quantities simplifies equation (A29)

to

W = Z[F;,.ax,- + B, 8yi + F, 62 + Tz,68, + 12,60, + (Ty, + T,0:,)86,]  (A30)

t

The kinetic energy, potential function, dissipation function, and virtual work have
all been defined in terms of the rotor physical coordinates y, z, @y, and ©,. These
functions can be expressed in terms of the rotor free-free modal coordinates using the

following transformations
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y = ®qy (A31)

@, = ¥q, (A32)
z = &q, (A33)
0, = -¥q, (A34)

where @ is the rotor free-free modal displacement matrix, ¥ is the rotor free-free modal
rotation matrix, qy is the rotor free-free modal coordinate vector in the y — z plane, and
q: is the rotor free-free modal coordinate vector in the z — z plane. It can be noted that
the rigid body modes must be included in @ and ¥. Substituting equations (A31)-(A34)

into equation (A9) yields the kinetic energy in terms of rotor modal coordinates:

1 .., 1 1, . :
T = §M:52 + §QTI,,Q + §q}¢qu>qy + aq;rQTm‘I)qz
1,

) 1, ) )
+ —2-q3\I!TIt\Ilqy + §q3WTIthz - Q4 vTI, ¥q, (A35)

The rotor free-free normal modal vectors are orthogonal and properly scaled so that

3Tmd + ¢TI, 0 =1 (A36)

Therefore, equation (A35) reduces to

1o, 1 1o, 1., .
T =M+ 0TLO + 5474y + 5474; - 04, Tqy (A37)

where

I =vTI, ¥ (A38)

Substituting equations (A31)-(A34) into equation (A14) yields the potential function in

terms of rotor modal coordinates:
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®qy T Kyy Ky, 0 0 ®q,

1 \Ilq Kg Kg. 6 0 0 \I/q
V — Y 2y L _ Y A3
2 ®q, 0 0 Kzz  Kazg, ®q, (A39)
-—‘I’qz 0 0 Kg,z Ke,6, —‘I’qz

Due to the orthogonality and proper scaling

T T11{ Fvy Kb, ®|_ 2
o7 wm [ e ][] = (440
and
ST _gT1| Fee ma6, || 21 _ 2 A4l
[ ] "\"Gyz K‘Byﬂy -y =Wy ( )

which gives

1 T w2
= 1 EIE) (e

where

wfh 0 0
0 ‘*’319 ... 0

wa=| . . : (A43)
0 0 w?

Substituting equations (A31)-(A34) into equation (A23) yields the dissipation function

in terms of rotor modal coordinates:

$(4y +0qz) V. [Bon Bre, O 0 3(qy + Na,)
G = l \I’((.Iy - flq,) BG(n B9<8( 0 0 ¥(qy - Qq,)
2 ®(q, - Qqy) 0 0 B¢ By, ®(q. - Qqy)
—‘I’(élz + qu) 0 0 ngC Bgngn -¥(q, + qu)
(A44

If the rotor damping is assumed to be proportional damping, the damping matrix can be
diagonalized by the modal matrices just as the stiffness matrix was diagonalized. This

allows equation (A44) to be written as
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T .
¢= 2 { C.lz - qu 0 ZCwn (.]z - qu ( )

where

20wa, 0 ... 0
0  2Gwn, ... O

2(wy = _ 0 _ (A46)
0 0 ... 2kwn,

Substituting equations (A31)-(A34)into equation (A30) yields the virtual work expression

in terms of rotor modal coordinates:

W = F6z+60 Tu+éq, (®TF, + ¥TT,)+6q.) [®TF, - ¥T(T, + T ¥q,)] (A47)

where

T, 0 0
0 T, ... O

TR=| . . . . (A48)
0 0 ... T,

is the diagonal matrix formed from the vector T.
The kinetic energy, potential function, dissipation function, and virtual work expres-
sion are now in the form desired for use with Lagrange’s equations. Lagrange’s equations

can be written in the following form

d(aT) or o9V oG

z\az _a_qi+aqi+6_:ji=Q* (A49)

where (J; is the generalized force acting at coordinate ¢; and is implicitly defined by

§W = ZQ;éq,- (A50)



Substituting equations (A37), (A42), and (A45) into equation (A49) and comparing equa-
tion (A47) with equation (A50) yields the following set of equations of motion for the

rotor:

Mi=F (A51)
Iafl - El'szQy - ‘.lrzrr(.ly = Tx (A52)
4y + Qg + w2qy + 2(wady + N2¢wnq, = ®TF, + ¢TT, (A53)

8z — OTdy + w2q, + 2(wnd, — Q2(waqy - ATqy = ®TF, - ¥TT, - UTT:Uq, (A54)

Neglecting second order terms for small angles, it can be seen from equation (A52) that

Ty = 1,02 (A55)

However, since the rotor is torsionally rigid, all elements of the vector §2 are equal, and

therefore

TZ = O, (A56)

x

Substituting equation (A56) into equation (A54) yields

s — OTdy +w3q, + 2(wnd, — 02(waqy = TF, - ¥TT, (A57)

Rewriting the complete set

1.5 = Ty (A58)
F,
i =2 A59
I=47 (A59)
dy + 2Cwndy + T4, + w2qy + Q2(waq, = TFy + ¥TT, (A60)
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. + 2¢wnd, — OTqy + w2q, — 2¢wnqy = ®TF, - ¥TT, (A61)

Equations (A58)-(A61) are the rotor equations of motion. Equation (A58) defines
the torsional motion. The rotor speed 2 will be a specified function of time, therefore,
equation (A58) will not be needed. The forces and torques i, F,,, F;, Ty, and T contain
the linear and nonlinear forces due to the elements connecting the rotor to the housing

as well as externally applied forces.

Housing Equations of Motion

The equations of motion for the housing are derived in the same manner as for the
rotor with the following exceptions. The housing doesn’t rotate so that all terms involving
() are absent from the housing equations. Also, the modal matrix used to diagonalize the
housing equations is derived from fixed-free boundary conditions. However, the housing-
rotor interface coordinates are free. The housing is not symmetric and its modes are not
entirely planar so the modal coordinates can not be separated into y and z coordinates as
in the case with the rotor. With these exceptions noted, the housing equations of motion

can be written directly

P+ 20hwn,D+wi p =& K, + & Fy, + @ Fn, + ¥ Ty, + VI T,  (A62)

Combined System Equations of Motion

With the rotor and housing equations determined, the system equations of motion

can be written,

3 0 0 0 0 T 0 0 0 0 z
i';y N 0 2¢wy,, QT 0 c'l_y N 0 w;‘:r Q2(wy,, 0 qy
4z 0 -QT 2(w,, O Q. 0 —Q2(wn, wi 0 qz
p 0 0 0 2(nwn, p 0 0 0 wﬁh P
B
M
&TF, + ¢TT
- y+t ¥ L (A63)
®TF, - ¢TT,

#1F, + 8] F, + 8TF, + VLT, + ¥,
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At this point the rotor and housing appear to be uncoupled. However, the force vectors
on the right hand side of equation (A63) are partially due to rotor-housing interaction
and can be expressed as functions of the modal coordinates. First, the forces are written

in terms of physical coordinates:

FE. = —k.(z —z3) — cz(2 — Z4) (A64)

I

where k, and ¢, are the axial stiffness and damping coefficients connecting the rotor to

the housing;

Fy = "kyy - Qyz + ky}'h + Qyzh - cy}.’ - CQ,é + Cy}.’h + CQyih

- myy — Mq, %+ my¥y, + Mq,zy + Fer, + Fn, (A66)

F, = Qy —kiz - Q,yn + k,zn + CQ,}.' —cyz — CQ,S’h + ¢, 2y

+ MQ,S’ - rnz2 - MQ,S’h + mzih + FEr, + Fnl (A67)
F, = ~(Fy - Fe,) - Fen, (A68)
Fh, = _(Fz - FEr,) - FEh. (Aﬁg)

where the coefficient matrices k, Q, ¢, Cq, m, and Mgq, are diagonal;

T, = -k®; + kO, (A70)
Ty = —ke®y + ke @y, (AT71)
Ty, = -T, (A72)
Ty, = - Ty (A73)
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where the coefficient matrix kg is diagonal. The external excitation forces (Fg, and Fgy,)
and nonlinear interaction forces (F,,) will be defined in later sections.
The physical coordinates (z, y, 2, etc.) can be replaced by the modal transformation

given by equations (A31)-(A34) for the rotor and the following for the housing;:

zp = Pn p (A74)
Yh = ®n, P (AT75)
O, = ¥n,p (AT76)
zp = ®u,p (A7T)
Oy, = ¥y, p (AT8)

Performing these transformations and substituting the resulting force expressions into

equation (A63) yields:

. k. Cr . )
I= -ﬁ(z - ®n,p) - Mx(l‘ - &4, p) (A79)

dy + 2(ewn, Gy + 04, + wp qy + Q26wn, 9,
= —‘I)Tkyq)Qy - q)TQy(I)qz + q’Tkth,p + Q'I‘Qyéh,p
- 3Tc, @q, - ®TCq, 84, + ®Tcy @1, p + T Cq, &1, b
~ ®Tm, %4, - #TMq, 24, + ®Tm, &, p + #TMq, &n, b

- ¥Tk¥qy + ¥ Tk Uy, p + T (Fg,, + Fy, ) (A80)

Gz + 2(rwn, z — Ty + Wi g, — Q2(wn, qy
=%7Q,%qy - Tk, ®q, - $TQ, %1, p + 2Tk, &1, p
+8TCq, &dy -~ 8Tc, 84, — ®TCq, &1 p + 8Tc, &y p
+®TMq, 24y — ®"m, 84, - #™Mq, &1, p + Tm, &y p

- 9Tk ¥q, - YTk, p + ®T(Fg,, + Fu,) (A81)
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P+ 2(hwn, P+ W2 p = B koz — By ko Ph,p + & .t~ 2 P, P
+ @ ky®qy + @5 Qy®q, — &) ky @1, P - @ Qy%1,p
- 37Q,2qy + &Lk, 2q; + 4. Q. ®h,P — &1 k. P0,P
+ &7 ¢, 84y + & Cq, ®4; — &4, ¢y &n,b — 25, Cq, B, P
-8 Cq, 2ay + B, 24, + &y, Cq, &n, b — &1, ¢z 8n, P
+ &7 my®d, + &L Mq, ®d, — &, myPs, b - &L Mq, ®u,P
- 3T Mq, 4, + &L m, P4, + 2. Mq, Pn, b — ¥y, m; 1, B
+ ¥ keWaqy — Uy ke¥h,p - Py ke¥q, - @y keWn, p

— @ (Fgn, + Fu,) - @4, (Fen, + Fu,) (A82)

Each force expression on the right-hand side of equations (A80)-(A82) should be recog-

nized as the sum of the generalized forces due to the physical forces, i.e.,

N
8TF, = > ¢F, (A83)

i=1

where ¢? represents the it" row of ®. These equations can be written more compactly
by combining the coefficients of the generalized coordinates on the left-hand side of the

equations as follows:

I T z 0
g ; T (Fg,, + Fn,)
MY pc{ P ik Y= YR
qz q: q: tI)'I‘(FEl'; + Fn.)
P p p —QE;,(FEhy + Fny) - @{(th, + Fy,)
(A84)
where
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P

0

and
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0 0 0 ]
_&T
1+ &Tm,& $TMq, & [ T my &y,
- #TMq, &,
T
-2"Mq, I+%Tm, [ ® Mg, 2,
- q)Tszh,
I+ m,d
- &, my$ ] [_qphTquq, QTh;wy;, .
: + - 3TMq &
+ QE;MQ;Q - Q;,I:mzé l¥ Qy *h, h; 7¥2Qs Fhy
+ Qh. m,@h. ]
(A85)
0 0 ~-&, gﬁ -
[ 2Crwn, ] [ Qr - q’Tcth,
+ QTcyQ + QTCQ,Q _ Qchth. .
[_ Qr 3 zcrwnr QTCQ,th
B QTCQ'Q / + <I>Tcz<§ - QTCth.
2(awny, + L ¢, @
[— Q}?;Cyé ) [— ‘I’;};CQVQ C;“;"C {:‘ycy ;:vrc
+ ') - Q
+25Cq,2) (- 8]c,® n,Cq, ®n, — &5, Cq, By,
+ él’i cth, + *Pﬁcz@h‘ J
(A86)



- h EL -
I 0 0 -Pn, 35
2 T
(W ) ( —® k, Py, )
r T QzCrwn, T y * hy
0 + Tk, & - - 3TQ, &,
T +27Qy 2 T
L + ¥ kW \ — ¥ kP, )
2 3\ ¢ &T 3\
w $°Q,d
( _ QZCrwnr 3 Dy - ¥ QT hy
K=} 0 n + @7k, - &7k, %y,
[ - 27Q.2 T T
+ ¥k ¥ | + Uk Ty,
2 T
Wg, + d, k, P,
-~ &Tk,® -2 Q,® P T
i ,; " + &7 Qy&s, - 27Q. B,
"’szh + Qh Qzé - @h,kz‘b T T
* '1" T + @, k. ®n, + Py kP,
- ¥, kW - ¥, k¥ ,I'\ ,;
I z y + ‘Illl,kt\llhz + ‘I’h,kt‘l’h,

(A87)
Each of these system matrices is, in general, a function of speed since the coefficient
matrices are functions of speed. The right-hand side of equation (A84) contains only

externally applied forces and nonlinear interaction forces. These will be discussed next.

External Forces

There are four external excitations that can be considered using the rotordynamic
analyses package: rotor mass unbalance forces, static side forces, white noise forces, and
pulse perturbation forces. The first three represent actual forces in the turbopump. The
pulse perturbation is a tool used to study the characteristics of the nonlinear system.

The unbalance forces are the inertia forces due to the acceleration of the eccentric
mass of the rotor. Since they are inertial, they are applied only to the rotor. The y and
z axis components are £90 degrees out of phase, depending on the direction of rotation.
The side forces are due to non-uniform circumferential pressure distributions that occur
in the turbines and the pump discharge volutes. These forces are applied to the rotor
and the housing with equal magnitude, but opposite direction. The white noise forces
represent the various random excitations that occur in the turbopump. Ra.ndo-m pressure
fluctuations in the turbines and pumps and external acoustic noise are examples. Noise
can be applied to the rotor and housing with equal but opposite forces, as with the side

forces, or to the rotor and/or housing independently. The pulse perturbation is applied
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at only one axial position and is applied to the rotor only. It can be defined as a square
pulse or a short duration oscillating force with a prescribed frequency.
The unbalance force is defined by specifying the product of mass and eccentricity

along with the phase for each axial location. For one location, the force is written as

Ry, = (ma)i6® cos(6 + ¢;) + (ma);asin(8 + ¢;) (A88)
Fiyz, = (ma);8” sin(8 + ¢;) — (ma)ia cos(B + ¢;) (A89)

where
6= /0 /0 afp)dpdr (A90)

The side force is defined by specifying the y and z axis components for each axial location

as quadratic polynominals in pump speed

FSy. = CyO, + QCyl,. + QzC!ﬂ.‘ (Agl)

FSZ. = CzO. + chl. + Q26‘22l (A92)

The white noise forces (FN,.yi, Fynr,. s Fnn,,,and Fyy,,) are defined by scaling a uniform
random number sequence with range (—1,1) to a desired range. The pulse perturbation

is either of the form

Fpy = %[5(t-r)_5(t—(:r+r))} (A93)
Fp, = Af" [6(t—r)-—-6(t—(T+T))] (A94)

or
Fpy = Ap, cos(wyt) [5(z —r)—8(t— (T + r))] (A95)
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Fp, = Ap, sin(wpt) [6(t —r)—b(t-(T+ r))] (A96)

where

(1 ift20
6(”“{0 if1<0 (A97)

The total of all external excitation forces can now be written as

Fgr,, = Fsy, + Fnr, + Fuy, + 6ikFpy, (A98)
Fer,, = Fszy + Fir,, + FUz, + bicFp, (A99)
Fen,, = Fsy, + FNn,, (A100)
Fen,, = Fsz, + FNn,, (A101)

Nonlinear Interaction Forces

Rotor-housing interaction forces are functions of the physical coordinates at partic-
ular locations. The linear interaction forces can be expressed as functions of the general-
“ized coordinates using coordinate transformations. This was done to arrive at equations
(A79)-(A82) and (A84). The nonlinear interaction forces, however, cannot be treated in
this way. At each instant in time, the generalized coordinates must be transformed into
physical coordinates. The nonlinear forces are then calculated as functions of the physical
coordinates. The physical forces are then transformed into generalized forces and applied
to the generalized coordinates.

There are three generic types of nonlinear force elements that can be represented
using the rotordynamics analysis package. The first is bearing clearance or deadband.
For this type of element, no force is produced until the relative displacement between
the rotor and housing exceeds some specified clearance. After this clearance has been
exceeded, the force is represented as a piecewise linear spring and damper. Figure 106
illustrates the piecewise linear spring force versus radial deflection. Figure 107 shows the

relative displacement and velocity vector diagram which is used to aid in writing the y
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8o 84 52 r

Figure 106. Deadband nonlinear element piecewise linear restoring force
versus radial deflection.

and z axis components of the nonlinear force. The element can be conceptualized as
shown in figure 108. This figure shows a separate spring damper subelement for each
clearance. The coefficients for the second and third of these are defined to be the changes
in the coefficients defined in figure 106. This makes it possible to write the force equation
as if the three parts were independent when they are actually not (figure 109). Referring
to figure 107, the actual displacement and velocity components across a given subelement

are

Ye, =Y — bicosd (A102)
Ze, = z—b;sin b (A103)
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Figure 107. Relative displacement and velocity vector diagram for
deadband nonlinear element.
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Figure 108. Conceptual representation of deadband nonlinear element.
Heavy-lined circles represent massless rings.
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Figure 109. Superposition of subelement piecewise linear force functions to yield
overall function for deadband nonlinear element.
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Yo, = 3 + 6;8sin 6 (A104)

2o, = 52— b0 cos b (A105)
where
,_ yz—zy
0= ) (A106)
and
r=Vy?+ 22 (A107)
Recognizing that
cos§ = % (A108)
and
sinf = - (A109)

equations (A102)-(A105) can be rewritten as

Ye, = y(l - ér-) (A110)
z, =z(1—%) (A111)
e, = 9+ —02 (A112)
fo, = - %éy (A113)

With these defined, the force components can be written directly for each range of dis-

placement. For r < §g,
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For 6p < r < 6y,

I';/ = _kyoyeo - Cyogeo

E = _kZozeo - CZozeo

For é; < r < &y,

F‘.:I = —(kyl - kyo )yex - (Cy] - Cyo)yex - kyoyeo - Cyo?)eo

FZ = —(kll - kzo)zex - (CZJ - czo)’%el - klozeo - CZo‘éeo

For 69 < 7,
F!:I = ‘(kyz - kyl)ye2 - (cyz - Cm)?)ez - (k!n - kyo)y€1

- (Cyl - cyo)yel - kyoyeo - Cyoyeo

F,o= —(kzy = k2 )2e, — (€2, — €2,)2e, — (kzy — k2, )ze,

- (czl = Cz )zel - kzozeo — Czp%¢

(A114)

(A115)

(A116)

(A117)

(A118)

(A119)

(A120)

(Al121)

Substituting equations (A110) - (A113) for each range of displacement into equations

(A116) - (A121) and simplifying yields the following: For ép < 7 < 61,

Brm (1= 2y a5+ 202

Fo=—k,(1- 553) — e (- %991/)

For 6; < r < 64,

&

T ky

Fy = —ky, [1“

1 Cyy 61

Ey_oél —(50 . é_]_ Cyo 61 —60
(1—— 6, )]y—cyl{y+r(1_—

(A122)

(A123)
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51 kzo (51 - 60 61 Cz, (51 - 60 .
E = -k, [l T(l "G )]z - ¢z [z . ( P> )Gy] (A125)
For é; < 7,
= by _knb b kypbhi—b
b= ‘kw[l" (- ky, 62 ky, 6 )]
. 62 Cy1 62 bt 61 Cyo 61 - (50 -
- Cy, [y + 7(1 - 'C—y?'—'—g— Cor _62 )02] (A126)
o by kzy b2 =81 kg 61— o
k= "’”22[1‘7( Tk, & ki, & )]Z
. 62 Cz, 62 - 61 Cz, 61 - 60 A
— Cz, [Z - -;'—( - ‘C: (52 - ; 62 )gy] (A127)
Each of these force expressions is of the form
é ) 6.
F!; = —k‘y(l —ay;)y—cy(y+ﬂy;()z) (A128)
6 . 5
E = —k:(l—a;;)z—cz(z—ﬂz;()y) (A129)

The stiffness and damping
speed.

coefficients in these expressions are, in general, functions of

The second type of nonlinear force element that can be represented is rotor-stator

rubbing. Rubbing is very similar to bearing clearance in that there is an abrupt stiffness

increase when contact is made. The rubbing force element contains the additional effect

of friction which produces

a force tangential to the contact surface. The rub element

can be conceptualized as shown in figure 110. It can be modeled using two different

formulations. The first is the more conventional and simpler of the two. First, the radial

force is calculated neglecting the effect of the frictional force:

C
Fr = ~kg(Ir| - ¢) = —knlr|(1 - m)

(A130)

Then the tangential force is determined as the product of the radial force and the coeffi-

cient of friction:

138

(A131)



(b)

Figure 110. Conceptual model of rub nonlinear element. (a) Undeflected position.
(b) Deflected position.
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The assumption is made here that the contact surface normal vector remains collinear with
the radial deflection vector. This assumption may be valid for low friction or light contact.
In general, however, the contact surface normal will be collinear with the resultant of the
radial and tangential forces. This is illustrated graphically in figure 111. A formulation
including this effect was developed by von Pragenau [19]. A new vector S has been
introduced to define the surface displacement. The total force is equal to the stiffness

multiplied by the surface displacement vector

F = —kgrS (A132)

This can be expressed in terms of the contact surface normal and tangential components

as

F = —FNéN - /J,FNéT (A133)

The angle between the force F and the surface contact normal éy is then

y=tan"!py (A134)

The displacement vectors are redrawn for clarity in figure 112. All three sides and one

angle are known, therefore, from elementary trigonometry, we have

It _ ¢
sin(mr —v) ~ sinfg (A135)

from which

sin C s (=) C i (A136)

Inf = —sin(r - v) = — siny

Ir| Ir|

Noting that

: : -1 H“

siny = sin(tan = —— (A137)



AN

T

Figure 111. Rub model vector diagram.
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Figure 112. Rub model displacement vector diagram.

and that

a=n-f-(r-7)=7-p (A138)

yields

- . 1/ € U
a=tan"!y —sin7! | — —— A139
g (|1'| V1+ ;ﬂ) ( )
The force F' can now be expressed in terms of radial and tangential components.
F = —krS = —kpg(r — cén) (A140)

but
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éN = é,cosa — égsina (A141)

therefore

F = —kg[(r - ccosa)é, + csin aég) (A142)

From equations (A139) and (A136), noting that

cos=4/1—sin®p (A143)

it can be shown that

1 c? 'u2 c /12
cosa = ————yfl - ———5 + ——— Al44
\/—_l-w?\/ T T TR (Al44)

and
2 2

: )7 2 p c u
sina = ——y|l-———= - ———— Al45
,/1+;ﬂ\/ [r? 1+ 42 [rf1+p? (A145)

Substituting (A144) - (A145) into (A142) yields the radial and tangential force compo-

nents in terms of the radial displacement r

F= —lerl I:l

c 1 . 2yt et u? 5
Il /1 + p2 21+ p? e r4p|

¢ 1 2 p? d 1
— uk S N S - : A146
ukrlr] [lrl V1 +u?\/ It 1+ p2  rf?1 +u"'} “ ( )

The third type of nonlinear force element is the floating ring seal. This is a very

complex element since it involves an additional mass suspended from the rotor and in-
teracting with the housing through friction. Since this element was not used in any part
of this study, the details of its formulation will not be included here.

Eccentricities are geometric offsets from the normal centerline of the housing (stator)

or rotor. The are not inherently nonlinear effects, but require the same transformations

143



(from generalized coordinates to physical coordinates and back) as the nonlinear force
calculations; therefore, they are calculated along with the nonlinear forces. Their most
pronounced effects occur when nonlinearities are present by altering the deflections re-
quired to reach a certain threshold in the nonlinear function (i.e., exceed a seal clearance
and rub). Their effects are included by adding the offsets to the relative deflection,

velocity, and acceleration expressions as follows:

Yrel = Yr — Yo + €-cOS(0 + ¢r) — €4, (A147)

Zrel = 2 — Zp + € 5IN(6 + @r) — €4, (A148)

Yret = Yr — Yn — e, sin(6 + ¢,) (A149)

Zrel = #r — 24 + Bep cos(8 + @) (A150)

Yret = §r — n — O€, sin(f + ¢r) — 8%¢, cos(6 + ¢,) (A151)
Zrel = 3, — 2p + e, cos(8 + ¢,) — 6%¢, sin(6 + ¢,) (A152)

where € is the angular position of the rotor and for constant speed cases

§ = wt (A153)

Solution Procedure

The equations of motion for the system have been defined in terms of generalized
coordinates associated with the component modes of the rotor and housing. The develop-
ment assumed that a complete set of component modes would be used to tra.msform from
the physical coordinates to the generalized coordinates. If a reduced or truncated set of
modes is used (thereby reducing the order of the model), the coordinate transformation
(equations (A31) - (A34) for the rotor, and equations (A74) - (A78) for the housing be-
come approximations and error is introduced into the model. If a sufficient number of

modes is retained, the magnitude of the error can be made small. The error can be further
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reduced for a given number of retained modes by a method known as condensation. This
method partially utilizes the modes to be eliminated rather then simply truncating them.
The method is developed for this application in reference 20. In order to avoid possible
influences on the results, condensation was not used in the numerical investigations of
this study.

The equations of motion given by equations (A84) - (A87) are a set of coupled,
nonlinear second order differential equations. The nonlinearities in these equations are all
contained in the rotor-housing interaction forces. These equations can be linearized in two
ways. First, the nonlinear force expressions can be linearized about some operating state
as described in chapter III. The state is determined by runniﬁg the nonlinear transient
simulation until a specified time is reached. Second, the nonlinearities can be neglected.
For the bearing clearance nonlinearity, this means that the clearance is assumed to be
either zero or infinite. The stiffness is then linear and can be handled like the other
linear stiffnesses. For the rubbing nonlinearity, the clearance is assumed to be infinite so
that rubbing never occurs. The linear set of equations can now be solved using standard
techniques.

The stability analysis program obtains the homogeneous solution to the equations of

motion (A84):

Mip+Cn+Knp=0 (A154)
where
T
={ Y A155
n g ( )
P

g = { Z} (A156)

and writing
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[181 é]ﬂ#[‘ol I‘i]ﬁzo (A157)

Letting

[0 1
P = M C] (A158)
(-1 0
R = o K] (A159)
and rearranging yields
f=-P'RS (A160)
Assuming
B = Be (A161)
then
3 = ABe*t (A162)

Substituting (A161) and (A162) into (A160) yields a standard eigenvalue problem

AB =-P"'RB (A163)

where A is an eigenvalue and B is an eigenvector. It should be noted that

Pl =

_n -1 -1
M™C M ] (A164)

I 0

so that only M (whose dimension is half that of P) must be inverted. Many times
In practice the interconnection forces defined by equations (A66) and (A67) contain no

inertia terms. In these cases M becomes the identity and the inversion is trivial.
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The eigenvalues and eigenvectors are, in general, complex quantities. The eigenvalues
provide the natural frequencies and degree of damping for each mode in the system.

Damping can be represented as a critical damping ratio for each mode using the relation

L) (A165)

The eigenvectors (or modeshapes) give the relative shape of the deformation that oc-
curs for a given mode. Since they are complex, displaying the vectors in a physically
meaningful way is not entirely straightforward. For a given eigenvector B, it can be seen
from equation (A156) that the lower half represents the displacement of the generalized

coordinate, hence

B; = {E} (A166)

This part of the eigenvector (N), which is expressed in generalized coordinates, must be
transformed back to physical coordinates using the transformations given in equations
(A31- (A34) and (A74) - (A78). Also, if condensation has been performed, the associated
transformations must be reversed. This yields a complex eigenvector expressed in physical

coordinates with the form

z y
y
CP
z

O, $
Zh
Yn
©

(A167)

2
Zh
L o,, )

The eigenvectors and eigenvalues were used in equation (A101) to separate the variable
into spatial and temporal factors. The transformations performed on B are now performed

on B which, from equation (A161) yields
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wit) = Wieh! (A168)

This can be expanded in terms of real and imaginary parts as

wi(t) = [Wr, + jWyJeQr+irn)e
= [Wg, + jWy,]err:! [cos(/\lit) + jsin(At)]
= [Wr, cos(Art) — Wy, sin(Ap,t)]errit

+ 7 [Whr, sin(A7,t) + Wy, cos(Ay,t)]e*r:t (A169)

Since w(t) must be real, only the real part is needed, so that the motion of the system

due to a given mode is

wi(t) = [Wrg, cos(Ajt) — Wy, sin(Agt)]e*rt (A170)

The exponential term determines the rate of decay or growth of the motion for the
mode. The modeshape characteristics can be displayed by plotting the motion through
one period and neglecting the decay term. This will yield a three dimensional figure;
however, the lateral motions (y;, z;) at particular axial locations are usually of prirflary

interest. For example, the rotor motion at the k** location for the i!* mode will be

Yk = Yr,, cos(Art) — Yy, sin(Aft) (A171)

Zp = ZR,“ COS(/\L.t) - Z]h sin()q.t) (A172)

To display these motions, it is necessary to let ¢ vary such that A 1;t covers the range from
0 to 2r. The motions given by equations (A171) and (A172) will trace out an ellipse
in the y — z plane. Housing motions and relative motions (rotor minus housing) can be
displayed in an identical manner. It should be noted that the display is more than just
the eigenvector. It is the transient motion of the vector (without the decay) through one

period.
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The forced response program obtains the particular solution to the equations of
motion. The excitation must be harmonic and can be in one of three forms. The first
and most often used form of excitation is due to mass unbalance of the rotor. This
excitation is harmonic at a frequency equal to rotational speed. Since the force vector is
rotating, the y and z axis components are +£90 degrees out of phase, depending on the
direction of rotation. Since it is inertial, it is applied only to the rotor. The second form
of excitation is static (zero frequency) and is due to circumferential pressure variations
in the turbopump. It is applied to the rotor with an equal but opposite force applied
to the housing. It is also distributed along the length of the rotor. The third form
is due to rotating eccentricities in the interconnection elements. The magnitude of the
force is equal to the product of the eccentricity and the element’s stiffness. For rotor
eccentricities, the frequency is equal to rotation speed. For the rolling element bearings,
the ball or roller train can become eccentric due to variations in element size and produce
an eccentricity rotating at the speed of the rolling element separator (cage). The force is
applied to the rotor with an equal but opposite force applied to the housing. The y and
z axis components are £90 degrees out of phase, depending on the direction of rotation.
All three forms of excitation are discretely distributed along the length of the rotor.

The equations of motion can be written for these types of excitation as

M()7 + C()7 + K(Q)7 = Q(wt) (A173)

where the dependency of M, C, and K on rotational speed (£2) has been emphasized and

w = pQ (A174)

Depending on the form of excitation, p will be 1, 0, or equal to the rolling element cage
speed ratio. Since the equations are linear and a harmonic excitation is applied, the

particular solution will be harmonic. The excitation can be written as

Q(t) = R(Qe’"] = R[(Qr + jQr)e’™"] (A175)
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where ®[ ] denotes the real part. The generalized force vector Q can be defined by

comparison with the right hand side of equation (A84):

0

T
Q) = STE () (A176)

—‘I>;i[; FEhy(t)—Ql;I:FEh’(t)
where Fg. , Fg.,, Fen,, and Fgy,, are the excitation forces for the rotor and housing

along the y and z axes. For the unbalance excitation

Fgr,i(t) = (ma);0? cos(Q + ;) (A177)

Fer,i(t) = (ma);Q%sin( + ¢;) (A178)

Fen,i(t) = Fgp,i(t) = 0. (A179)

For the static excitation

Fg,, = Fg, (A180)

Fer, = Fs, (A181)

Fen, = FEi, (A182)

Feu, = Fgi, (A183)

For the eccentricity excitation

FEryi(t) = k;e; COS(th + d),) (A184)
FEr,i(t) = kie; sin(th + ¢;) (A185)
Fen,i(t) = Fer,i(t) (A186)
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Fgn,i(t) = FEr,i()

From (A175) and (A176)

Fe(t) = R[(R + j1)e?*?"] = R cos(pQt) — Isin(pQt)

For unbalance excitation, from equations (A177) - (A178)

R. ;= (ma),-ﬂ2 cos @;
I ; = (ma),-Q2 sin ¢;
R.,; = (ma);Q? sin ¢;

I,i= —(ma),'Q2 cos ¢;

R, = Fsy, = |Fs]cos |tan™! (fiz—y

R.,; = Fs,, = |F5,|sin tan~} (&>

Ry i =R, ;

14

Rp,i = Ry,;

and I, and I, are of no consequence since in equation (A188)

sin(pQt) = sin(0t) = 0.

For the eccentricity excitation, from equation (A184) - (A185)

(A187)

(A188)

(A189)

(A190)

(A191)

(A192)

(A193)

(A194)

(A195)

(A196)

(A197)

(A198)
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R"'vi = k,’(,’ Ccos (f),' (Algg)

I, = kie; sin ¢ (A200)
R, i = ki€ sin ¢; (A201)
I i = —kie; cos ¢; (A202)
Rp,i = R ; (A203)
In,i =1, ; (A204)
Bn,i = R.; (A205)
i =1, (A206)

From equations (A175), (A176), and (A188)

0

_
(Qr +7Qn) = et o (A207)

—‘I’;,I;(Rh, +7L,) = L (Rn, +5In,)
where R and I are defined using either equations (A189) - (A193), (A194) - (A197),
or (A199) - (A206) depending on the form of the excitation. With Q expressed as in

equation (A175), the solution can be assumed to be of a similar form

n(t) = R[NevY) (A208)

so that

M(t) = RjwNe Y] (A209)

and
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i(t) = R[-w?Ne!) (A210)

Substituting (A175) and (A208) - (A210) into (A173) and canceling the e’ term yields

[(K(Q) - w?M(Q) + jwC(Q)N = Q (A211)

Equating real and imaginary parts of equation (A211) gives

(K — w*M)Ngr — wCN1 = Qg (A212)

wCNRg + (K — w?M)Ny = Q1 (A213)

Equations (A212) and (A213) can be solved simultaneously for Ng and Ni.

The response vector N defined by equation (A208) can be displayed in exactly the
same way as the N defined as the displacement part of the eigenvector in equation (A166).
The procedure is exactly the same except that the decay term that is ignored when
displaying the eigenvector never appears for the response vector; therefore, the procedure
will not be repeated here.

The nonlinear transient simulation obtains the complete solution of equation (A84)
with all of the nonlinearities and excitations that have been discussed. Rewriting equation

(A84) with the introduction of 7 as defined by equation (A153) gives

Mii + Ci + Kn = Q(¢) (A214)

This equation can be put into a form that is convenient for numerical solution. First, it

can be rearranged as

i = M1[Q(t) - Kn — Ci] (A215)

If the interconnection forces defined by equation (A66) and (A67) contain no inertia

terms, then M becomes the identity and inversion is not required. Equation (A215) can
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be written with no derivatives on the right hand side by introducing a new variable and

corresponding equation

v =M7Q(t) - Kn - Cv) (A217)

This set of equations is now in the general form of

% = f(x,1) (A218)

These equations will be integrated using the Adams-Moulton predictor-corrector method.

The predictor equation for this method is

h
xP, 1 =Xn + 22 [55f(Xn,2n) — 59f(Xn-1,tn—1 ) + 37f(Xn_2,ln_2) — 9 (Xn_3,tn_3)]
(A219)

The corrector equation is

h
Xn41 = Xn+ 22 [9f(xE, 1, tns )+ 19f(Xp, tn) = 5f(Xn-1,tn-y ) + f(Xn-2,tn-»)] (A220)

This method requires four starting points which can be obtained by using a simpler

method. The method used here is the Euler or tangent line method

Xnt+1 = Xp + hf(Xq,t0) (A221)

The first point needed is the prescribed initial condition vector. Equation (A221) is used
three times to obtain enough values to begin using equations (A219) and (A220). An
alternate method is built into the simulation as an option. The alternate method was not
used in this study and will not be described here.

The numerical integration produces the generalized coordinate motion at the discrete

time points
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tn=n-h (A222)

where n is an integer and varies from zero to the specified rmaximum. The generalized
coordinate motion is transformed back into physical coordinates and these coordinates,
along with interaction forces and housing accelerations can be displayed versus time. It is
usually necessary to perform certain operations on the results after they have been gen-
erated. This post-processing includes such things as filters and Fourier transformations.

The M, C, and K matrices in equation (A217) are, in general, functions of engine
power level. As discussed earlier, due to the relationship between power level and speed,
they can be expressed as functions of speed. If speed is a function of time, these matrices
(and M~ if required) must be frequently re-evaluated. It is not necessary to re-evaluate
them at each time step, however. The frequency for re-evaluation is specified in terms
of a speed increment instead of time. This increment should be made small enough to
keep the change in the interconnection coefficients small. This approach allows for more

efficient numerical solution of the system equations.
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APPENDIX B
HPFTP MODEL NOMINAL DATA

The nominal rotor-housing interconnection coefficient data are shown in figures 113

through 119. These data were provided by the SSME manufacturer with the exception of

the pump interstage seal cross-coupled stiffness coefficients. The coefficients provided by

the manufacturer were replaced with functions of the form of equation 125 where 0 = .6.

The resulting curve closely matched the original data. The damping coefficients for all

bearings was a constant of 3.03’%5. The frequencies of the nine free-free rotor component

modes are shown in table 2. The frequencies of the twenty free interface housing modes

are shown in table 3.

Table 2. Frequencies of free-free rotor modes.

Mode 1 - 0.0 Hz.
Mode 2 - 0.0 Hz.

Mode 3 - 634.5 Hz.
Hz.

Mode 4 - 1350.
Mode 5 - 1910.
Mode 6 - 2591.
Mode 7 - 3216.
Mode 8 - 3935.
Mode 9 - 3953.

L JELCET e ogaen
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Table 3. Frequencies of free interface housing modes.

Mode 1 - 50.29 Hz.
Mode 2 - 114.0 Hz.
Mode 3 - 363.9 Hz.
Mode 4 - 417.9 Hz.
Mode 5 - 712.9 Hz.
Mode 6 - 836.3 Hz.

Mode 7 - 920.1 Hz.
Mode & - 995.8 Hz.

Mode 9 - 1024.
Mode 10 -1143.
Mode 11 -1163.
Mode 12 -1672.
-1672.
-1802.
-1808.
-2573.
-2646.
-2753.
-3534.
Mode 20 -3536.

Mode
Mode
Mode
Mode
Mode
Mode
Mode

13
14
15
16
17
18
19

Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
Hz.
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